2007 national math olympiad questions
1. āĻā§āύ āĻŽāĻžāϏā§āϰ 1 āϤāĻžāϰāĻŋāĻā§ āĻāĻāϏāĻžāĻĨā§ āϤā§āĻŽāĻžāĻĻā§āϰ āĻāĻŖāĻŋāϤ, āĻāĻāϰā§āĻāĻŋ āĻ āĻŦāĻžāĻāϞāĻž āĻā§āϞāĻžāĻļ āĻļā§āϰ⧠āĻšāϞ āĨ¤ āĻāĻŖāĻŋāϤ āĻā§āϞāĻžāĻļ āĻšāĻŦā§ 1,3,5,7,9. . . āϤāĻžāϰāĻŋāĻā§ āĨ¤ āĻāĻāϰā§āĻāĻŋ āĻā§āϞāĻžāĻļ 1, 4, 7, 10, 13 āϤāĻžāϰāĻŋāĻā§ āĻāĻŦāĻ āĻŦāĻžāĻāϞāĻž āĻā§āϞāĻžāĻļ 1,5,9,13,17. . . .āϤāĻžāϰāĻŋāĻā§ āĨ¤ āĻĒā§āϰāĻĨāĻŽ 3 āĻŽāĻžāϏ⧠āĻāϤ āĻŦāĻžāϰ āĻāĻŦāĻžāϰ āϤāĻŋāύāĻāĻŋ āĻā§āϞāĻžāĻļāĻ āĻāĻāĻ āĻĻāĻŋāύ⧠āĻāϰāϤ⧠āĻšāĻŦā§? 30 āĻĻāĻŋāύ⧠āĻŽāĻžāϏ āϧāϰ⧠āύāĻžāĻ āĨ¤
Mathematics, English and Bangla classes started on the very first day of a month. Mathematics class schedule is 1,3,5,7,9. . . . The schedule for English is 1,4,7,10,13. . . . And for Bangla it is 1, 5, 9, 13, 17…… Within the next 3 months, how many times you will have to attend the all 3 classes at the same date? Suppose all the months are of 30 days.
2. āĻĸāĻžāĻāĻž āĻĨā§āĻā§ āĻāĻžāĻŽāĻžāϞāĻĒā§āϰ āϝāĻžāĻāϝāĻŧāĻžāϰ āĻĒāĻĨā§ āĻŽā§āĻ 10 āĻāĻŋ āϏā§āĻā§āĻļāύ āĻāĻā§āĨ¤ āĻĒā§āϰāϤāĻŋāĻāĻŋ āϏā§āĻā§āĻļāύ āĻĨā§āĻā§ āĻ
āύā§āϝ āϝā§āĻā§āύ āϏā§āĻā§āĻļāύ⧠āϝāĻžāĻāϝāĻŧāĻžāϰ āĻāĻĒ-āĻĄāĻžāĻāύ āĻāĻŋāĻāĻŋāĻ āϰāϝāĻŧā§āĻā§āĨ¤ āĻāĻ āĻĒāĻĨā§āϰ āϏā§āĻā§āĻļāύāĻā§āϞā§āϤ⧠āĻāĻĒ-āĻĄāĻžāĻāύ āĻŽāĻŋāϞāĻŋāϝāĻŧā§ āĻŽā§āĻ āĻāϤ āϧāϰāύā§āϰ āĻāĻŋāĻāĻŋāĻ āϰāϝāĻŧā§āĻā§?
There are 10 stations on the way from Dhaka to Jamalpur. Up-down tickets are available at each station to go to any other station. How many varieties of tickets are available at all the stations on the way, considering both up and down path?
3. 625 āĻŽāĻŋāĻāĻžāϰ āĻāĻĒāϰ āĻĨā§āĻā§ āĻāĻāĻāĻŋ āĻŦāϞ āĻĢā§āϞāĻž āĻšāϞ āĨ¤ āĻĒā§āϰāϤāĻŋāĻŦāĻžāϰ āĻŦāϞāĻāĻŋ āĻŽāĻžāĻāĻŋ āϏā§āĻĒāϰā§āĻļ āĻāϰāĻžāϰ āĻĒāϰ āϤāĻžāϰ āĻĒā§āϰā§āĻŦāĻŦāϰā§āϤ⧠āĻĒāϰā§āϝāĻžāϝāĻŧā§ āϝāϤāĻā§āĻā§ āĻĒāĻĨ āύā§āĻŽā§āĻāĻŋāϞ āϤāĻžāϰ \[\frac25\] āĻ
āĻāĻļ āĻāĻĒāϰ⧠āĻāĻ ā§ āĻāϏā§āĨ¤ āĻāϤā§āϰā§āĻĨ āĻŦāĻžāϰ āĻŽāĻžāĻāĻŋ āϏā§āĻĒāϰā§āĻļ āĻāϰāĻžāϰ āĻĒāϰ āĻŦāϞāĻāĻŋ āĻŽā§āĻ āĻāϤ āĻĒāĻĨ āĻāĻĒāϰ⧠āĻāĻ ā§ āĻāϏāĻŦā§?
A ball is dropped from a height of 625 meters. Each time it hits the ground, it bounces \[\frac25\] of the height it fell in the previous stage. How far will it reach upward in the 4th bounce ?
4. āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤā§āϰ āĻĒāϰāĻŋāϧāĻŋāϰ āĻāĻĒāϰ 5 āĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ āϰāϝāĻŧā§āĻā§āĨ¤ āĻŦāĻŋāύā§āĻĻā§ 5 āĻāĻŋ āĻšāϤ⧠3 āĻāĻŋ āĻāϰ⧠āĻŦāĻŋāύā§āĻĻā§ āύāĻŋāϝāĻŧā§ āϤā§āϰāĻŋāĻā§āĻ āĻāĻ āύ āĻāϰāϞ⧠āĻāϰā§āĻĒ āĻŽā§āĻ āĻāϝāĻŧāĻāĻŋ āϤā§āϰāĻŋāĻā§āĻ āĻāĻāĻāĻž āϝāĻžāĻŦā§?
How many triangles can you draw using any 3 of 5 points located on the circumference of a circle?
5. āĻāĻāĻāĻŋ āĻāĻĄāĻŧāĻŋāϰ āĻĄāĻžāϝāĻŧāĻžāϞāĻā§ 5 āĻāĻŋ āϰā§āĻāĻž āĻā§āύ⧠āĻāĻŽāύāĻāĻžāĻŦā§ 6 āĻāĻŋ āĻāĻžāĻā§ āĻāĻžāĻ āĻāϰ āϝāĻžāϤ⧠āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻžāĻā§āϰ āϏāĻāĻā§āϝāĻž āĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
Divide the face of a clock into 6 parts by drawing 5 lines so that the sums of the numbers in the 6 parts are equal.
6. āϤā§āĻŽāĻŋ āϝāĻĻāĻŋ āĻŦāĻžāĻĄāĻŧāĻŋ āĻĨā§āĻā§ āĻšā§āĻā§ āϏā§āĻā§āϞ⧠āϝāĻžāĻ āĻāĻŦāĻ āĻšā§āĻā§ āĻĢāĻŋāϰ⧠āĻāϏ⧠āϤāĻžāĻšāϞ⧠1 āĻāύā§āĻāĻž 20 āĻŽāĻŋāύāĻŋāĻ āϏāĻŽāϝāĻŧ āϞāĻžāĻā§ āĨ¤ āĻšā§āĻā§ āĻāĻŋāϝāĻŧā§ āϰāĻŋāĻā§āϏāĻžāϝāĻŧ āĻĢāĻŋāϰ⧠āĻāϏāϞ⧠āϞāĻžāĻā§ 1 āĻāύā§āĻāĻžāĨ¤ āϤā§āĻŽāĻŋ āϝāĻĻāĻŋ āϰāĻŋāĻā§āϏāĻžāϝāĻŧ āĻāĻŋāϝāĻŧā§ āϰāĻŋāĻā§āϏāĻžāϝāĻŧ āĻĢāĻŋāϰ⧠āĻāϏ⧠āϤāĻžāĻšāϞ⧠āĻŽā§āĻ āĻāϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻāĻŦā§?
If you go to school from home on foot and return on foot, it takes 1 hour and 20 minutes. Going on foot and return by rickshaw take 1 hour. If you go by rickshaw and also return by rickshaw, what time would be needed in that case?
7. āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻāĻĨāĻž āĻāĻžāĻŦ āϝāĻž 12 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻā§āϝāĻŧā§ āĻŦāĻĄāĻŧ āĻāĻŦāĻ 13 āĻāϰ āĻŦāϰā§āĻā§āϰ āĻā§āϝāĻŧā§ āĻā§āĻāĨ¤ āϏāĻāĻā§āϝāĻžāĻāĻŋāĻā§ 5 āĻāϰ āĻŦāϰā§āĻ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāϞ⧠āĻāĻžāĻāĻļā§āώ āĻĨāĻžāĻā§ 3āĨ¤ āĻŦāϞāϤ⧠āϏāĻāĻā§āϝāĻžāĻāĻŋ āĻāϤ?
Think about a number. It is greater than 12 squared and less than 13 squared. The remainder is 3 when it is divided by 5 squared. What is the number are you thinking about?
8. A, B, C āϤāĻŋāύāĻāĻŋ āĻŦā§āϤā§āϤā§āϰ āĻŽāϧā§āϝ⧠A āϏāĻŦāĻā§āϝāĻŧā§ āĻŦāĻĄāĻŧ, B āĻŽāĻžāĻāĻžāϰāĻŋ āĻāĻŦāĻ C āĻā§āĻāĨ¤ A āĻŦā§āϤā§āϤā§āϰ āĻŦā§āϝāĻžāϏ 20 āϏā§.āĻŽāĻŋ. āĨ¤ āĻŦā§āϤā§āϤāĻā§āϞ⧠āĻāĻŽāύāĻāĻžāĻŦā§ āĻāĻāĻāĻž āĻšāϞ āϝā§āύ A āĻāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ B āĻāϰ āĻŦā§āϝāĻžāϏ āĻāĻŦāĻ B āĻāϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ C āĻāϰ āĻŦā§āϝāĻžāϏā§āϰ āϏāĻŽāĻžāύ āĻšāϝāĻŧ āĨ¤ C āĻŦā§āϤā§āϤā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦā§āϰ āĻāϰāĨ¤ āϏāĻžāĻšāĻžāϝā§āϝ: āĻŦā§āϤā§āϤā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 3.14à āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ
There are 3 circles A, B, C. Of them A is the largest, B is medium and C is the smallest. Circle A has a diameter of 20cm. The circles are drawn so that the radius of circle A is the diameter of Circle B, and the radius of Circle B is the diameter of Circle C. What is the area of Circle C ? Hints: Area of a Circle = 3.14 à radius à radius
9.
4   5    9    ?    ?   ?    16    ?     7
2   2    4    ?    5   7    ?    1      ?
2   3    5   6    ?   8    ?    ?     4
4    6   2   20   42  25   ?   63    ?Â
āĻĒā§āϰāĻļā§āύāĻŦā§āϧāĻ āĻāĻŋāĻšā§āύā§āϰ āĻāĻžāϝāĻŧāĻāĻžāϝāĻŧ āϏāĻ āĻŋāĻ āϏāĻāĻā§āϝāĻž āĻŦāϏāĻžāĻ āĨ¤
Replace the question marks with appropriate numbers?
2007 national math olympiad questions pdf
10. āĻāĻāĻāĻŋ āĻāύāĻāĻā§ āϰāĻ āĻāϰāϤ⧠1 āĻŦā§āϤāϞ āĻāĻžāϞāĻŋ āϞāĻžāĻā§āĨ¤ āĻāύāĻāĻāĻŋāĻā§ āϏāĻŽāĻžāύ 8 (eight) āĻāĻžāĻā§ āĻāĻžāĻ
āĻāϰ⧠āϰāĻ āĻāϰāϞ⧠āĻŽā§āĻ āĻāϤ āĻŦā§āϤāϞ āĻāĻžāϞāĻŋ āϞāĻžāĻāĻŦā§?
āϏāĻžāĻšāĻžāϝā§āϝ: āĻāĻāĻāĻŋ āĻāύāĻā§āϰ āĻĒā§āώā§āĻ āϤāϞā§āϰ āϏāĻāĻā§āϝāĻž āĻŽā§āĻ 6 āĻāĻŋ
āĻāĻŦāĻ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻĒā§āώā§āĻ āϤāϞā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝÃāĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝāĨ¤
bottle of ink is needed to color a cube. If the cube is divided into equal 8 parts, how many bottles of ink would be needed to color all the new cubes? Hint: There are total 6 surfaces in a cube and the area of each surface = length of a side length of a side.
11. āĻāĻāĻāĻŋ āĻāύāĻā§āϰ āĻĒā§āώā§āĻ āĻĻā§āĻļāĻā§āϞ⧠āĻāĻŋāύā§āύ āĻāĻŋāύā§āύ āϰāĻ (A, B, C, D āĻāĻŦāĻ E) āĻĻā§āϝāĻŧāĻž āĻšāϝāĻŧā§āĻā§ āĨ¤ āĻāύāĻā§āϰ āϤāĻŋāύāĻāĻŋ āĻāĻŋāύā§āύ āĻāĻŋāύā§āύ āĻĻāĻŋāĻ āĻĨā§āĻā§ āĻāĻāϰāĻāĻŽ āĻĻā§āĻāĻž āĻā§āϞ⧠āĻĒā§āϰāĻĨāĻŽ āĻāĻŦāĻŋāϤ⧠āύāĻŋāĻā§āϰ āĻĒā§āώā§āĻ ā§āϰ āϰāĻ āĻāĻŋ?

The surfaces of a cube are painted with different (A, B, C, D and E colors. The cubed are like the figures from different views. What is the color of the bottom of the first figure?
12. āĻāύāĻ āĻĻāĻŋāϝāĻŧā§ āϤā§āϰ⧠āϤāĻŋāύ āϧāĻžāĻĒ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻĒāϰā§āϰ āϏā§āϤāĻŽā§āĻāĻāĻŋāĻā§ 20 āϧāĻžāĻĒ āĻĒāϰā§āϝāύā§āϤ āĻŦāĻžāĻĄāĻŧāĻžāϞ⧠āĻāϰ⧠āĻāϤāĻāĻŋ āĻāύāĻ āϞāĻžāĻāĻŦā§?

The stairway is made of cubes. How many extra cubes would be needed to make the steps 20 steps high?
Junior Category
1. āϝāĻĻāĻŋ \[\frac{10}{4} = 4\] āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠5Ã2 = āĻāϤ?
(āϏāĻŦ āϏāĻāĻā§āϝāĻžāĻ āϝ⧠āĻĻāĻļ āĻāĻŋāϤā§āϤāĻŋāĻ āĻšāĻŦā§ āϏā§āĻāĻž āĻāĻŋāύā§āϤ⧠āϏāϤā§āϝāĻŋ āύāϝāĻŧ)
If = \[\frac{10}{4} = 4\] = 4, then 5 x 2 = ?
[The base of a number may not be 10]
2. āĻāĻŋāϤā§āϰ⧠āĻāĻāĻāĻŋ āĻŦāϰā§āĻā§āϰ āĻāĻŋāϤāϰ⧠āĻāϰā§āĻāĻāĻŋ āĻŦāϰā§āĻ āĻāĻāĻāĻž āĻāĻā§āĨ¤ āĻāĻ āĻāĻŋāϤā§āϰāĻāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻĒāĻŋāĻĨāĻžāĻā§āϰāĻžāϏā§āϰ āϏā§āϤā§āϰāĻāĻŋ āĻĒā§āϰāϤāĻŋāĻĒāĻžāĻĻāύ āĻāϰ āĨ¤

In the figure there is a square inscribed in another square. Using this figure derive the Pythagorean Theorem.
3. āĻāĻ āϞā§āĻā§āϰ āĻāĻžāϰ āϏāύā§āϤāĻžāύāĨ¤ āĻĒā§āϰāĻĨāĻŽ āϏāύā§āϤāĻžāύā§āϰ āĻŦāϝāĻŧāϏ āĻāĻāĻāĻŋ āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāĨ¤ āĻāĻ āĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻžāϰ āĻ
āĻāĻ āĻā§āϞā§āĻā§ āĻā§āĻŖ āĻāϰāϞ⧠āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ āĻĻā§āĻŦāĻŋāϤā§āϝāĻŧ āϏāύā§āϤāĻžāύā§āϰ āĻŦāϝāĻŧāϏ āĻāĻŦāĻ āϝā§āĻ āĻāϰāϞ⧠āϤā§āϤā§āϝāĻŧ āϏāύā§āϤāĻžāύā§āϰ āĻŦāϝāĻŧāϏ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤ āĻĻā§āĻŦāĻŋāϤā§āϝāĻŧ āϏāύā§āϤāĻžāύā§āϰ āĻŦāϝāĻŧāϏā§āϰ āĻ
āĻā§āĻāĻā§āϞ⧠āϝā§āĻ āĻāϰāϞ⧠āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ āĻāϤā§āϰā§āĻĨ āϏāύā§āϤāĻžāύā§āϰ āĻŦāϝāĻŧāϏāĨ¤ āĻĒāϰ āĻĒāϰ āĻĻā§āĻ āϏāύā§āϤāĻžāύā§āϰ āĻŦāϝāĻŧāϏā§āϰ āĻŦā§āϝāĻŦāϧāĻžāύ 25 āĻŦāĻāϰā§āϰ āĻŦā§āĻļāĻŋ āύāĻž āĻšāϞ⧠āĻāĻžāϰ āĻŦāϝāĻŧāϏ āĻāϤ?
A man has 4 children. The age of the first child is a square number. By multiplying the digits of this square number you will get the age of the second child and by summing the digits you will get the age of third child. If you add the digits of the age of the second child, you will get the age of fourth child. If the difference of age of two consecutive children is not more than 25 years, then find the ages of 4 children
8. \[ \log_{\left(x+3\right)}(x^2+15)=2 \] āĻšāϞ⧠x=?
If \[ \log_{\left(x+3\right)}(x^2+15)=2 \], then x =?
5. āϤā§āϰāĻŋāĻā§āĻ āĻĻā§āĻŦāϝāĻŧā§āϰ āϝ⧠āĻ āĻāĻļāĻā§āĻā§ āĻĒāϰāϏā§āĻĒāϰāĻā§ āĻā§āĻĻ āĻāϰā§āύāĻŋ (āĻĻāĻžāĻ āĻŦāĻŋāĻšā§āύ āĻ āĻāĻļ āĻā§āĻā§), āϤāĻžāĻĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞā§āϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ āĻāϤ? āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻĒāϰāĻŋāĻŦāϰā§āϤ⧠āϝāĻĻāĻŋ āĻĻā§āĻāĻŋ āĻŦā§āϤā§āϤ āĻāĻŋāĻāĻŦāĻž āĻ āύā§āϝ āϝā§āĻā§āύ āĻāĻā§āϤāĻŋāϰ āĻā§āώā§āϤā§āϰ āĻāĻĻā§āϰ āĻĒāϰāϏā§āĻĒāϰāĻā§ āĻā§āĻĻ āĻāϰāϤ, āϏā§āĻā§āώā§āϤā§āϰ⧠āĻĢāϞāĻžāĻĢāϞ āĻā§āĻŽāύ āĻāϏāϤ, āĻŽāύā§āϤāĻŦā§āϝ āĻāϰ āĨ¤

Bangladesh math Olympiad questions
Find the difference between the non-shaded area (â ABDF and âFCE) of the triangles. Instead of triangles, if there were circles or any other shape, what would be the result – comment on that.
6. āϤā§āĻŽāĻžāĻĻā§āϰ āĻāĻŖāĻŋāϤ, āĻāĻāϰā§āĻāĻŋ āĻ āĻŦāĻžāĻāϞāĻž āĻā§āϞāĻžāĻļ āĻļā§āϰ⧠āĻšāϞ āĻŽāĻžāϏā§āϰ 1 āϤāĻžāϰāĻŋāĻā§āĨ¤ āĻāĻŖāĻŋāϤ āĻā§āϞāĻžāĻļ āĻšāĻŦā§ 1,3,5,7,9. . . āϤāĻžāϰāĻŋāĻā§āĨ¤ āĻāĻāϰā§āĻāĻŋ āĻā§āϞāĻžāĻļ 1,47,1013. āϤāĻžāϰāĻŋāĻā§ āĻāĻŦāĻ āĻŦāĻžāĻāϞāĻž āĻā§āϞāĻžāĻļ 1,5,9,13,17. . . .āϤāĻžāϰāĻŋāĻā§āĨ¤ āĻĒā§āϰāĻĨāĻŽ 3 āĻŽāĻžāϏ⧠āĻŽā§āĻ āĻāϤ āĻĻāĻŋāύ āĻā§āύ āĻā§āϞāĻžāĻļāĻ āĻāϰāϤ⧠āĻšāĻŦā§ āύāĻž? 30 āĻĻāĻŋāύ⧠āĻŽāĻžāϏ āϧāϰ⧠āύāĻžāĻ ā§ˇ
Mathematics, English and Bangla classes started on the very first day of a month. Mathematics class schedule is 1,3,5,7,9. . . . The schedule for English is 1,4,7,10,13. . . . and for Bangla it is 1, 5, 9, 13, 17. In next 3 months how many vacations will you get ? Suppose all the months are of 30 days.
7. āĻāĻāĻāĻŋ āĻŦāϞāĻā§ āĻŽāĻžāĻāĻŋ āĻĨā§āĻā§ āĻāĻĒāϰā§āϰ āĻĻāĻŋāĻā§ āĻāϞāĻŽā§āĻŦ āĻāĻžāĻŦā§ āύāĻŋāĻā§āώā§āĻĒ āĻāϰāĻžāϝāĻŧ āϏā§āĻāĻŋ 650 āĻŽāĻŋāĻāĻžāϰ āĻāĻĒāϰ⧠āĻāĻ āϞāĨ¤ āĻĒā§āϰāϤāĻŋāĻŦāĻžāϰ āĻŦāϞāĻāĻŋ āĻŽāĻžāĻāĻŋ āϏā§āĻĒāϰā§āĻļ āĻāϰāĻžāϰ āĻĒāϰ āϤāĻžāϰ āĻĒā§āϰā§āĻŦāĻŦāϰā§āϤ⧠āĻāĻā§āĻāϤāĻžāϰ \[\frac25\] āĻ
āĻāĻļ āĻāĻĒāϰ⧠āĻāĻ ā§ āĻāϏ⧠āĨ¤ āĻĒā§āϰāĻĨāĻŽ 20 āĻŦāĻžāϰ āĻāĻ āĻžāύāĻžāĻŽāĻžāϰ āĻĢāϞ⧠āĻŦāϞāĻāĻŋāϰ āĻŽā§āĻ āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦ āĻāϤ āĻšāĻŦā§? āĻŦāϞāĻāĻŋ āϝāĻĻāĻŋ 1 āĻŦāĻžāϰ āĻāĻ āĻžāύāĻžāĻŽāĻž āĻāϰ⧠āϤāĻŦā§ āĻŽā§āĻ āĻ
āϤāĻŋāĻā§āϰāĻžāύā§āϤ āĻĻā§āϰāϤā§āĻŦā§āϰ āϏā§āϤā§āϰ āĻŦā§āϰ āĻāϰāĨ¤
A ball is thrown upward vertically to a height of 650 meters from ground. Each time it hits the ground, it bounces \[\frac25\] of the height it fell in the previous stage.How much the ball will travel during the first 20 bounces? And also derive the formula of determining the total length traveled during n number of bounces.
8. āĻāĻāĻāĻŋ āĻŦāϰā§āĻā§āϰ āϤāĻŋāύ āĻā§āĻŖ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāϰā§āĻāĻāĻŋ āĻŦāϰā§āĻ āĻāĻāĻ āĨ¤
Draw a square which has area that is three times the area of another given square.
9. \[\sqrt{â1 }\] āĻā§ āĻāĻžāϞā§āĻĒāύāĻŋāĻ āĻŦāĻž āĻāĻŽāĻžāĻāĻŋāύāĻžāϰāĻŋ āϏāĻāĻā§āϝāĻž âi’ āĻŦāϞāĻž āĻšāϝāĻŧāĨ¤ āĻāĻāĻžāĻā§ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§
\[\frac{1 + i}{1 â i}\] āϏāĻŽāĻžāύ āĻāϤ āϤāĻž āĻŦā§āϰ āĻāϰāϤ⧠āĻĒāĻžāϰāĻŦā§?
\[\sqrt{â1 }\] is called the imaginary number âiâ. Using this, can you find out the value of \[\frac{1 + i}{1 â i}\] ?
10. 4+7+13+25+……. . āϧāĻžāϰāĻžāĻāĻŋāϰ
1) āĻĒā§āϰāĻĨāĻŽ 20 āĻĒāĻĻā§āϰ āϝā§āĻāĻĢāϞ āĻŦā§āϰ āĻāϰ
2) āϧāĻžāϰāĻžāĻāĻŋāϰ āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻā§āϰ āϝā§āĻāĻĢāϞ āĻāϤ?
Find the sum of first 20 terms of the series
4+7+13+25+. . . . . . ..
What is the sum of first n terms?
11. āĻāĻāĻāĻŋ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŦāĻžāĻšā§ āϤāĻŋāύāĻāĻŋāϰ āĻĻā§āϰā§āĻā§āϝ āϝāĻĨāĻžāĻā§āϰāĻŽā§ a, b, c āĻāĻŦāĻ āĻāĻĻā§āϰ āĻŽāϧā§āϝ⧠āϏāĻŽā§āĻĒāϰā§āĻ āĻšāϞ \[ a^2+b^2+c^2 [latex] = ab+bc+ca. āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰ āϝā§, āĻāϞā§āĻāĻŋāϤ āϤā§āϰāĻŋāĻā§āĻāĻāĻŋ āĻāĻāĻāĻŋ āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ āĨ¤
If a, b, c are sides of a triangle such that [latex] a^2+b^2+c^2 [latex] = ab+bc+ca. Show that the triangle is equilateral.
12. āϏāĻŽāĻŦā§āϝāĻžāϏāĻžāϰā§āϧ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻĻā§āĻāĻŋ āĻŦā§āϤā§āϤ āĻĒāϰāϏā§āĻĒāϰāĻā§ C āĻ D āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ āĻŦā§āϤā§āϤāĻĻā§āĻŦāϝāĻŧā§āϰ āĻā§āύā§āĻĻā§āϰ āϝāĻĨāĻžāĻā§āϰāĻŽā§ A āĻ BāĨ¤ āϝāĻĻāĻŋ āϤāĻžāĻĻā§āϰ āĻŦā§āϝāĻžāϏāĻžāϰā§āϧ 10 āĻāĻŦāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 40 āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠A āĻ B āĻŦāĻŋāύā§āĻĻā§āϰ āĻĻā§āϰāϤā§āĻŦ x āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤

Bangladesh Math Olympiad questions
Two circles of equal radius intersect each other at point C and D. The centers of the two circles are point A and B respectively. If their radius is 10 and the area of AABC is 40, then find the distance x between A and B.
13. āĻāĻāĻāĻŋ āĻŦāĻžāĻā§āϏ⧠100 āĻāĻŋ āĻāĻžāϞ, ā§Ēā§ĻāĻāĻŋ āύā§āϞ, 60 āĻāĻŋ āϞāĻžāϞ āĻ 40 āĻāĻŋ āϏāĻžāĻĻāĻž āĻŽā§āĻāĻž āĻāĻā§āĨ¤ āĻāύā§āĻĻāĻžāĻā§ āĻŦāĻžāĻā§āϏ āĻĨā§āĻā§ āĻāĻāĻāĻŋ āĻāĻāĻāĻŋ āĻāϰ⧠āĻŽā§āĻāĻž āϤā§āϞāĻž āĻšāϞ, āĻāĻŋāύā§āϤ⧠āĻŽā§āĻāĻžāϰ āϰāĻ āĻāĻŋ āϤāĻž āĻŽā§āĻāĻžāĻāĻŋ āĻŦāĻžāĻā§āϏ āĻĨā§āĻā§ āĻŦā§āϰ āύāĻž āĻāϰāĻž āĻĒāϰā§āϝāύā§āϤ āĻāĻžāύāĻž āϏāĻŽā§āĻāĻŦ āĻāĻŋāϞ āύāĻžāĨ¤ āϏāϰā§āĻŦāύāĻŋāϧ āĻāϝāĻŧāĻāĻŋ āĻŽā§āĻāĻž āϤā§āϞāϞ⧠āύāĻŋāĻļā§āĻāĻŋāϤ āĻšāĻāϝāĻŧāĻž āϝāĻžāĻŦā§ āϝ⧠āĻāĻŽāĻĒāĻā§āώ⧠10 āĻā§āĻĄāĻŧāĻž āĻŽā§āĻāĻž āϤā§āϞāĻž āĻšāϝāĻŧā§āĻā§? (āĻāĻ āĻā§āĻĄāĻŧāĻž āĻŽā§āĻāĻž āĻŽāĻžāύ⧠āĻĻā§āĻāĻŋ āĻāĻāĻ āϰāĻā§āϰ āĻŽā§āĻāĻž)
A drawer in a room contains 100 black socks 80 blue socks, 60 red socks and 40 white socks. Someone randomly selects one sock at a time from the drawer, but is unable to the color of the sock until he has taken it out of the drawer. What is the smallest number of socks that must be taken out to guarantee that at least 10 pairs have been taken out? [A pair of sock = 2 socks of the same color]
Secondary Category
1. [latex] x^x = y\] āĻāĻŦāĻ \[ y^y = y \] āĻšāĻ˛ā§ Ã āĻ y āĻāϰ āĻŦāĻžāϏā§āϤāĻŦ āϏāĻŽāĻžāϧāĻžāύ
(x, y)) āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
Solve for (x, y) in real number where \[ x^x = y\] and \[ y^y = y \]
2. 1 āĻĨā§āĻā§ 100 āĻĒāϰā§āϝāύā§āϤ āĻĒāϰāĻĒāϰ āϞāĻŋāĻā§ āĻāĻāĻāĻŋ āĻŦāĻĄāĻŧ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž N āĻāĻ āύ āĻāϰāĻž āĻšāϞ, , āĻ
āϰā§āĻĨāĻžā§
N = 123456789101112…9899100 | N āĻā§ 3 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāϞ⧠āĻāϤ āĻ
āĻŦāĻļāĻŋāώā§āĻ āĻĨāĻžāĻāĻŦā§ ?
Writing down all the integers from 1 to 100 we make a large integer N.
N = 123456789101112…9899100. What will be remainder if we divide N by 3?
3. āĻāĻāĻāĻŋ āĻŦāϰā§āĻā§āϰ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ 2 āĻāĻāĻ āĨ¤ āϧāϰāĻž āϝāĻžāĻ, s āĻšāϞ āĻāĻŽāύ āĻāĻāĻāĻŋ āϏā§āĻ āϝāĻžāϰ āĻāĻĒāĻžāĻĻāĻžāύ āĻšāϞ 2 āĻāĻāĻ āĻĻā§āϰā§āĻā§āϝ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻŽāύ āϏāĻŦ āϰā§āĻāĻžāĻāĻļ āϝāĻžāĻĻā§āϰ āĻĒā§āϰāĻžāύā§āϤ āĻŦāĻŋāύā§āĻĻā§ āĻĻā§āĻŦāϝāĻŧ āĻŦāϰā§āĻāĻāĻŋāϰ āϏāύā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āĻā§āϞā§āϰ āĻāĻĒāϰ āĻ
āĻŦāϏā§āĻĨāĻŋāϤ āĨ¤ āĻāϰ⧠āϧāϰāĻž āϝāĻžāĻ L āĻšāϞ āĻāĻŽāύ āĻāĻāĻāĻŋ āϏā§āĻ āϝāĻž s āϏā§āĻā§āϰ āĻ
āύā§āϤāϰā§āĻā§āĻā§āϤ āϰā§āĻāĻžāĻāĻļāĻā§āϞā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϏāĻŽā§āĻšā§āϰ āϏāĻŽāύā§āύāϝāĻŧā§ āĻāĻ āĻŋāϤāĨ¤ L āĻĻā§āĻŦāĻžāϰāĻž āĻāĻŦāĻĻā§āϧ āĻā§āώā§āϤā§āϰāĻāĻŋāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
A square has sides of length 2. Let S is the set of all line segments that have length 2 and whose endpoints are on adjacent side of the square. Say L is the set of the midpoints of all segments in S. Find out the area enclosed by L.
āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻĻā§āĻāĻŋ āĻā§āϝāĻž āĻāϰ āĻĻā§āϰā§āĻā§āϝ āϝāĻĨāĻžāĻā§āϰāĻŽā§ 10 āĻ 14 āĻāĻāĻ āĨ¤ āĻāĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ 6 āĻāĻāĻāĨ¤ āĻā§āϝāĻžāĻĻā§āĻŦāϝāĻŧ āĻšāϤ⧠āϏāĻŽāĻĻā§āϰāϤā§āĻŦā§ āĻāĻŽāύ āĻāϰā§āĻāĻāĻŋ āĻā§āϝāĻž āϰāϝāĻŧā§āĻā§ āϝāĻž āĻāϞā§āĻāĻŋāϤ āĻā§āϝāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻāĻŦāĻ āϝāĻžāϰ āĻĻā§āϰā§āĻā§āϝ \[\sqrt{a}\]āĨ¤ a āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
Two parallel chords of a circle have length 10 and 14. The distance between them is 6. The chord parallel to these chords and half way between them has length \[\sqrt{a}\]. Find a .
5. āĻāĻāĻāĻŋ āĻŦāϞāĻā§ āĻŽāĻžāĻāĻŋ āĻĨā§āĻā§ āĻāĻĒāϰā§āϰ āĻĻāĻŋāĻā§ āĻāϞāĻŽā§āĻŦ āĻāĻžāĻŦā§ āύāĻŋāĻā§āώā§āĻĒ āĻāϰāĻžāϝāĻŧ āϏā§āĻāĻŋ 650 āĻŽāĻŋāĻāĻžāϰ āĻāĻĒāϰ⧠āĻāĻ ā§ āύāĻŋāĻā§ āύāĻžāĻŽāϤ⧠āĻļā§āϰ⧠āĻāϰāϞāĨ¤ āĻĒā§āϰāϤāĻŋāĻŦāĻžāϰ āĻŦāϞāĻāĻŋ āĻŽāĻžāĻāĻŋ āϏā§āĻĒāϰā§āĻļ āĻāϰāĻžāϰ āĻĒāϰ āϤāĻžāϰ āĻĒā§āϰā§āĻŦāĻŦāϰā§āϤ⧠āĻāĻā§āĻāϤāĻžāϰ \[\frac25 \] āĻ
āĻāĻļ āĻāĻĒāϰ⧠āĻāĻ ā§ āĻāϏā§āĨ¤ āĻĨā§āĻŽā§ āϝāĻžāĻāϝāĻŧāĻžāϰ āĻāĻ āĻĒāϰā§āϝāύā§āϤ āĻŦāϞāĻāĻŋ āĻŽā§āĻ āĻāϤ āĻĻā§āϰāϤā§āĻŦ āĻ
āϤāĻŋāĻā§āϰāĻŽ āĻāϰāĻŦā§? A ball is thrown upward vertically to a height of 650 meters from ground. Each time it hits the ground, it bounces \[\frac25 \] of the height it fell in the previous stage. How much the ball will travel before it stops?
6. |x+y|+|xây|= 4 āĻāĻ āĻā§āώā§āϤā§āϰāĻāĻŋ āĻĻā§āĻŦāĻžāϰāĻž āϏā§āĻŽāĻžāĻŦāĻĻā§āϧ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ, āϝā§āĻāĻžāύ⧠x āĻ y āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻž āĨ¤
What is the area bounded by the region|x + y|+|x – y = 4. Where x,y are real numbers.
7. \[\sqrt{1+2+3+……+ n} \] āĻāĻāĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻž āĻšāϞ⧠n āĻāϰ āϏāϰā§āĻŦāύāĻŋāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ, āϝā§āĻāĻžāύ⧠n āĻāĻāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž āĻāĻŦāĻ 1 < n < 10 |
Find the smallest positive integer n >1, such that \[\sqrt{1+2+3+……+ n} \] is an integer. Note: n < 10.
8. āϝāĻĻāĻŋ \[ m + 12 = p^a \] āĻāĻŦāĻ \[ m â 12 = p^b \] āĻšāϝāĻŧ, āϝā§āĻāĻžāύ⧠a,b,m āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž āĻāĻŦāĻ P āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻžāĨ¤ p > 0 āĻāϰ āϏāĻŽā§āĻāĻžāĻŦā§āϝ āϏāĻāϞ āϧāύāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤ (āĻā§āϝāĻŧāĻžāϞ āĻāϰ, P āĻāϰ āĻā§āĻŦāϞ āϤāĻŋāύāĻāĻŋ āĻŽāĻžāύ āϏāĻŽā§āĻāĻŦāĨ¤)
If \[ m + 12 = p^a \] and \[ m â 12 = p^b \] where a,b,m are integers and p is a prime number. Find all possible primes P> 0. [Note: P only takes three values]
9. \[ x^3 + bx^2 + 3x + 11 \] āϰāĻžāĻļāĻŋāĻāĻŋāϰ āĻāĻāĻāĻŋ āĻā§āĻĒāĻžāĻĻāĻ \[ x^2 + 3x â 4 \] āĻšāϞ⧠b āĻ c āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
If \[ x^2 + 3x â 4 \] is a factor of \[ x^3 + bx^2 + 3x + 11 \], then find the values of b and c.
Junior Math Olympiad problems PDF
10. āĻāĻāĻāĻŋ āĻŦāĻžāĻā§āϏ⧠100 āĻāĻŋ āĻāĻžāϞ, ā§Ēā§ĻāĻāĻŋ āύā§āϞ, 60 āĻāĻŋ āϞāĻžāϞ āĻ 40 āĻāĻŋ āϏāĻžāĻĻāĻž āĻŽā§āĻāĻž āĻāĻā§ āĨ¤ āĻāύā§āĻĻāĻžāĻā§ āĻŦāĻžāĻā§āϏ āĻĨā§āĻā§ āĻāĻāĻāĻŋ āĻāĻāĻāĻŋ āĻāϰ⧠āĻŽā§āĻāĻž āϤā§āϞāĻž āĻšāϞ, āĻāĻŋāύā§āϤ⧠āĻŽā§āĻāĻžāϰ āϰāĻ āĻāĻŋ āϤāĻž āĻŽā§āĻāĻžāĻāĻŋ āĻŦāĻžāĻā§āϏ āĻĨā§āĻā§ āĻŦā§āϰ āύāĻž āĻāϰāĻž āĻĒāϰā§āϝāύā§āϤ āĻāĻžāύāĻž āϏāĻŽā§āĻāĻŦ āĻāĻŋāϞ āύāĻžāĨ¤ āϏāϰā§āĻŦāύāĻŋā§° āĻāϝāĻŧāĻāĻŋ āĻŽā§āĻāĻž āϤā§āϞāϞ⧠āύāĻŋāĻļā§āĻāĻŋāϤ āĻšāĻāϝāĻŧāĻž āϝāĻžāĻŦā§ āϝ⧠10 āĻā§āĻĄāĻŧāĻž āĻŽā§āĻāĻž āϤā§āϞāĻž āĻšāϝāĻŧā§āĻā§? (āĻāĻ āĻā§āĻĄāĻŧāĻž āĻŽā§āĻāĻž āĻŽāĻžāύ⧠āĻĻā§āĻāĻŋ āĻāĻāĻ āϰāĻā§āϰ āĻŽā§āĻāĻž) A drawer in a room contains 100 black socks 80 blue socks, 60 red socks and 40 purple socks. Someone randomly selects one sock at a time from the drawer, but is unable to the color of the sock until he has taken it out of the drawer. What is the smallest number of socks that must be taken out to guarantee that 10 pairs have been taken out? [A pair of sock = 2 socks of the same color]
11. 5, 6 āĻāĻŦāĻ 7 āĻāĻāĻ āĻĻā§āϰā§āĻā§āϝ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻāĻāĻāĻŋ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ
āĻā§āϝāύā§āϤāϰ⧠āϏāĻŦāĻā§āϝāĻŧā§ āĻŦāĻĄāĻŧ āϝ⧠āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰāĻāĻŋ āĻāĻāĻāĻž āϏāĻŽā§āĻāĻŦ, āϤāĻžāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
Find the area of the largest square inscribed in a triangle of sides 5,6 and 7.
12. \[ (x^{100} â 2x^{51} + 1) \] āĻā§ \[ (x^2 â 1) \] āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāϞ⧠āĻāĻžāĻāĻļā§āώ āĻāϤ āĻšāĻŦā§?
Find the remainder on dividing \[ (x^{100} â 2x^{51} + 1) \] by \[ (x^2 â 1) \]
14. āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰ āϝā§, āĻĻā§āĻāĻŋ āĻĒā§āϰā§āĻŖ āϏāĻāĻā§āϝāĻžāϰ āĻā§āϞāĻĢāϞ āϤāĻžāĻĻā§āϰ āϞ.āϏāĻž.āĻā§ āĻāĻŦāĻ āĻ.āϏāĻž.āĻā§ āĻāϰ āĻā§āĻŖāĻĢāϞā§āϰ āϏāĻŽāĻžāύāĨ¤
Prove that if a and b are two integers, then a à b = LCM(a,b) à GCD(a,b).

