2007 national math olympiad questions

 

1. āϕ⧋āύ āĻŽāĻžāϏ⧇āϰ 1 āϤāĻžāϰāĻŋāϖ⧇ āĻāĻ•āϏāĻžāĻĨ⧇ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āĻ—āĻŖāĻŋāϤ, āχāĻ‚āϰ⧇āϜāĻŋ āĻ“ āĻŦāĻžāĻ‚āϞāĻž āĻ•ā§āϞāĻžāĻļ āĻļ⧁āϰ⧁ āĻšāϞ āĨ¤ āĻ—āĻŖāĻŋāϤ āĻ•ā§āϞāĻžāĻļ āĻšāĻŦ⧇ 1,3,5,7,9. . . āϤāĻžāϰāĻŋāϖ⧇ āĨ¤ āχāĻ‚āϰ⧇āϜāĻŋ āĻ•ā§āϞāĻžāĻļ 1, 4, 7, 10, 13 āϤāĻžāϰāĻŋāϖ⧇ āĻāĻŦāĻ‚ āĻŦāĻžāĻ‚āϞāĻž āĻ•ā§āϞāĻžāĻļ 1,5,9,13,17. . . .āϤāĻžāϰāĻŋāϖ⧇ āĨ¤ āĻĒā§āϰāĻĨāĻŽ 3 āĻŽāĻžāϏ⧇ āĻ•āϤ āĻŦāĻžāϰ āφāĻŦāĻžāϰ āϤāĻŋāύāϟāĻŋ āĻ•ā§āϞāĻžāĻļāχ āĻāĻ•āχ āĻĻāĻŋāύ⧇ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇? 30 āĻĻāĻŋāύ⧇ āĻŽāĻžāϏ āϧāϰ⧇ āύāĻžāĻ“ āĨ¤
Mathematics, English and Bangla classes started on the very first day of a month. Mathematics class schedule is 1,3,5,7,9. . . . The schedule for English is 1,4,7,10,13. . . . And for Bangla it is 1, 5, 9, 13, 17…… Within the next 3 months, how many times you will have to attend the all 3 classes at the same date? Suppose all the months are of 30 days.

2. āĻĸāĻžāĻ•āĻž āĻĨ⧇āϕ⧇ āϜāĻžāĻŽāĻžāϞāĻĒ⧁āϰ āϝāĻžāĻ“āϝāĻŧāĻžāϰ āĻĒāĻĨ⧇ āĻŽā§‹āϟ 10 āϟāĻŋ āĻ¸ā§āĻŸā§‡āĻļāύ āφāϛ⧇āĨ¤ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻ¸ā§āĻŸā§‡āĻļāύ āĻĨ⧇āϕ⧇ āĻ…āĻ¨ā§āϝ āϝ⧇āϕ⧋āύ āĻ¸ā§āĻŸā§‡āĻļāύ⧇ āϝāĻžāĻ“āϝāĻŧāĻžāϰ āφāĻĒ-āĻĄāĻžāωāύ āϟāĻŋāĻ•āĻŋāϟ āϰāϝāĻŧ⧇āϛ⧇āĨ¤ āĻāχ āĻĒāĻĨ⧇āϰ āĻ¸ā§āĻŸā§‡āĻļāύāϗ⧁āϞ⧋āϤ⧇ āφāĻĒ-āĻĄāĻžāωāύ āĻŽāĻŋāϞāĻŋāϝāĻŧ⧇ āĻŽā§‹āϟ āĻ•āϤ āϧāϰāύ⧇āϰ āϟāĻŋāĻ•āĻŋāϟ āϰāϝāĻŧ⧇āϛ⧇?
There are 10 stations on the way from Dhaka to Jamalpur. Up-down tickets are available at each station to go to any other station. How many varieties of tickets are available at all the stations on the way, considering both up and down path?
3. 625 āĻŽāĻŋāϟāĻžāϰ āωāĻĒāϰ āĻĨ⧇āϕ⧇ āĻāĻ•āϟāĻŋ āĻŦāϞ āĻĢ⧇āϞāĻž āĻšāϞ āĨ¤ āĻĒā§āϰāϤāĻŋāĻŦāĻžāϰ āĻŦāϞāϟāĻŋ āĻŽāĻžāϟāĻŋ āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻ•āϰāĻžāϰ āĻĒāϰ āϤāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āĻĒāĻ°ā§āϝāĻžāϝāĻŧ⧇ āϝāϤāϟ⧁āϕ⧁ āĻĒāĻĨ āύ⧇āĻŽā§‡āĻ›āĻŋāϞ āϤāĻžāϰ \[\frac25\] āĻ…āĻ‚āĻļ āωāĻĒāϰ⧇ āωāϠ⧇ āφāϏ⧇āĨ¤ āϚāϤ⧁āĻ°ā§āĻĨ āĻŦāĻžāϰ āĻŽāĻžāϟāĻŋ āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻ•āϰāĻžāϰ āĻĒāϰ āĻŦāϞāϟāĻŋ āĻŽā§‹āϟ āĻ•āϤ āĻĒāĻĨ āωāĻĒāϰ⧇ āωāϠ⧇ āφāϏāĻŦ⧇?
A ball is dropped from a height of 625 meters. Each time it hits the ground, it bounces \[\frac25\] of the height it fell in the previous stage. How far will it reach upward in the 4th bounce ?

4. āĻāĻ•āϟāĻŋ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻĒāϰāĻŋāϧāĻŋāϰ āωāĻĒāϰ 5 āϟāĻŋ āĻŦāĻŋāĻ¨ā§āĻĻ⧁ āϰāϝāĻŧ⧇āϛ⧇āĨ¤ āĻŦāĻŋāĻ¨ā§āĻĻ⧁ 5 āϟāĻŋ āĻšāϤ⧇ 3 āϟāĻŋ āĻ•āϰ⧇ āĻŦāĻŋāĻ¨ā§āĻĻ⧁ āύāĻŋāϝāĻŧ⧇ āĻ¤ā§āϰāĻŋāϭ⧁āϜ āĻ—āĻ āύ āĻ•āϰāϞ⧇ āĻāϰ⧂āĻĒ āĻŽā§‹āϟ āĻ•āϝāĻŧāϟāĻŋ āĻ¤ā§āϰāĻŋāϭ⧁āϜ āφāρāĻ•āĻž āϝāĻžāĻŦ⧇?
How many triangles can you draw using any 3 of 5 points located on the circumference of a circle?
5. āĻāĻ•āϟāĻŋ āϘāĻĄāĻŧāĻŋāϰ āĻĄāĻžāϝāĻŧāĻžāϞāϕ⧇ 5 āϟāĻŋ āϰ⧇āĻ–āĻž āĻŸā§‡āύ⧇ āĻāĻŽāύāĻ­āĻžāĻŦ⧇ 6 āϟāĻŋ āĻ­āĻžāϗ⧇ āĻ­āĻžāĻ— āĻ•āϰ āϝāĻžāϤ⧇ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻ­āĻžāϗ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āϗ⧁āϞ⧋āϰ āϝ⧋āĻ—āĻĢāϞ āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
Divide the face of a clock into 6 parts by drawing 5 lines so that the sums of the numbers in the 6 parts are equal.
6. āϤ⧁āĻŽāĻŋ āϝāĻĻāĻŋ āĻŦāĻžāĻĄāĻŧāĻŋ āĻĨ⧇āϕ⧇ āĻšā§‡āĻŸā§‡ āĻ¸ā§āϕ⧁āϞ⧇ āϝāĻžāĻ“ āĻāĻŦāĻ‚ āĻšā§‡āĻŸā§‡ āĻĢāĻŋāϰ⧇ āφāϏ⧋ āϤāĻžāĻšāϞ⧇ 1 āϘāĻ¨ā§āϟāĻž 20 āĻŽāĻŋāύāĻŋāϟ āϏāĻŽāϝāĻŧ āϞāĻžāϗ⧇ āĨ¤ āĻšā§‡āĻŸā§‡ āĻ—āĻŋāϝāĻŧ⧇ āϰāĻŋāĻ•ā§āϏāĻžāϝāĻŧ āĻĢāĻŋāϰ⧇ āφāϏāϞ⧇ āϞāĻžāϗ⧇ 1 āϘāĻ¨ā§āϟāĻžāĨ¤ āϤ⧁āĻŽāĻŋ āϝāĻĻāĻŋ āϰāĻŋāĻ•ā§āϏāĻžāϝāĻŧ āĻ—āĻŋāϝāĻŧ⧇ āϰāĻŋāĻ•ā§āϏāĻžāϝāĻŧ āĻĢāĻŋāϰ⧇ āφāϏ⧋ āϤāĻžāĻšāϞ⧇ āĻŽā§‹āϟ āĻ•āϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻ—āĻŦ⧇?
If you go to school from home on foot and return on foot, it takes 1 hour and 20 minutes. Going on foot and return by rickshaw take 1 hour. If you go by rickshaw and also return by rickshaw, what time would be needed in that case?
7. āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•āĻĨāĻž āĻ­āĻžāĻŦ āϝāĻž 12 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻšā§‡āϝāĻŧ⧇ āĻŦāĻĄāĻŧ āĻāĻŦāĻ‚ 13 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟāĨ¤ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϕ⧇ 5 āĻāϰ āĻŦāĻ°ā§āĻ— āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāϕ⧇ 3āĨ¤ āĻŦāϞāϤ⧋ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻ•āϤ?
Think about a number. It is greater than 12 squared and less than 13 squared. The remainder is 3 when it is divided by 5 squared. What is the number are you thinking about?
8. A, B, C āϤāĻŋāύāϟāĻŋ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻŽāĻ§ā§āϝ⧇ A āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻŦāĻĄāĻŧ, B āĻŽāĻžāĻāĻžāϰāĻŋ āĻāĻŦāĻ‚ C āϛ⧋āϟāĨ¤ A āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻŦā§āϝāĻžāϏ 20 āϏ⧇.āĻŽāĻŋ. āĨ¤ āĻŦ⧃āĻ¤ā§āϤāϗ⧁āϞ⧋ āĻāĻŽāύāĻ­āĻžāĻŦ⧇ āφāρāĻ•āĻž āĻšāϞ āϝ⧇āύ A āĻāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ B āĻāϰ āĻŦā§āϝāĻžāϏ āĻāĻŦāĻ‚ B āĻāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ C āĻāϰ āĻŦā§āϝāĻžāϏ⧇āϰ āϏāĻŽāĻžāύ āĻšāϝāĻŧ āĨ¤ C āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻŦ⧇āϰ āĻ•āϰāĨ¤ āϏāĻžāĻšāĻžāĻ¯ā§āϝ: āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 3.14× āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ
There are 3 circles A, B, C. Of them A is the largest, B is medium and C is the smallest. Circle A has a diameter of 20cm. The circles are drawn so that the radius of circle A is the diameter of Circle B, and the radius of Circle B is the diameter of Circle C. What is the area of Circle C ? Hints: Area of a Circle = 3.14 × radius × radius
9.
4     5       9       ?       ?      ?       16        ?          7
2     2       4       ?       5      7        ?        1           ?
2      3       5      6       ?      8        ?        ?         4
4       6      2      20     42   25      ?      63       ? 
āĻĒā§āϰāĻļā§āύāĻŦā§‹āϧāĻ• āϚāĻŋāĻšā§āύ⧇āϰ āϜāĻžāϝāĻŧāĻ—āĻžāϝāĻŧ āϏāĻ āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāϏāĻžāĻ“ āĨ¤
Replace the question marks with appropriate numbers?

 

2007 national math olympiad questions pdf

10. āĻāĻ•āϟāĻŋ āϘāύāĻ•āϕ⧇ āϰāĻ™ āĻ•āϰāϤ⧇ 1 āĻŦā§‹āϤāϞ āĻ•āĻžāϞāĻŋ āϞāĻžāϗ⧇āĨ¤ āϘāύāĻ•āϟāĻŋāϕ⧇ āϏāĻŽāĻžāύ 8 (eight) āĻ­āĻžāϗ⧇ āĻ­āĻžāĻ—
āĻ•āϰ⧇ āϰāĻ™ āĻ•āϰāϞ⧇ āĻŽā§‹āϟ āĻ•āϤ āĻŦā§‹āϤāϞ āĻ•āĻžāϞāĻŋ āϞāĻžāĻ—āĻŦ⧇?
āϏāĻžāĻšāĻžāĻ¯ā§āϝ: āĻāĻ•āϟāĻŋ āϘāύāϕ⧇āϰ āĻĒ⧃āĻˇā§āĻ āϤāϞ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻŽā§‹āϟ 6 āϟāĻŋ
āĻāĻŦāĻ‚ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻĒ⧃āĻˇā§āĻ āϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āĻ¯Ã—āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝāĨ¤

bottle of ink is needed to color a cube. If the cube is divided into equal 8 parts, how many bottles of ink would be needed to color all the new cubes? Hint: There are total 6 surfaces in a cube and the area of each surface = length of a side length of a side.
11. āĻāĻ•āϟāĻŋ āϘāύāϕ⧇āϰ āĻĒ⧃āĻˇā§āĻ āĻĻ⧇āĻļāϗ⧁āϞ⧋ āĻ­āĻŋāĻ¨ā§āύ āĻ­āĻŋāĻ¨ā§āύ āϰāĻ™ (A, B, C, D āĻāĻŦāĻ‚ E) āĻĻ⧇āϝāĻŧāĻž āĻšāϝāĻŧ⧇āϛ⧇ āĨ¤ āϘāύāϕ⧇āϰ āϤāĻŋāύāϟāĻŋ āĻ­āĻŋāĻ¨ā§āύ āĻ­āĻŋāĻ¨ā§āύ āĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ āĻāχāϰāĻ•āĻŽ āĻĻ⧇āĻ–āĻž āϗ⧇āϞ⧇ āĻĒā§āϰāĻĨāĻŽ āĻ›āĻŦāĻŋāϤ⧇ āύāĻŋāĻšā§‡āϰ āĻĒ⧃āĻˇā§āϠ⧇āϰ āϰāĻ™ āĻ•āĻŋ?

2007 national math olympiad questions
The surfaces of a cube are painted with different (A, B, C, D and E colors. The cubed are like the figures from different views. What is the color of the bottom of the first figure?
12. āϘāύāĻ• āĻĻāĻŋāϝāĻŧ⧇ āϤ⧈āϰ⧀ āϤāĻŋāύ āϧāĻžāĻĒ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āωāĻĒāϰ⧇āϰ āĻ¸ā§āϤāĻŽā§āĻ­āϟāĻŋāϕ⧇ 20 āϧāĻžāĻĒ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŦāĻžāĻĄāĻŧāĻžāϞ⧇ āφāϰ⧋ āĻ•āϤāϟāĻŋ āϘāύāĻ• āϞāĻžāĻ—āĻŦ⧇?

%Focuse keyword%
The stairway is made of cubes. How many extra cubes would be needed to make the steps 20 steps high?

 

Junior Category

1. āϝāĻĻāĻŋ \[\frac{10}{4} = 4\] āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧇ 5×2 = āĻ•āϤ?
(āϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāχ āϝ⧇ āĻĻāĻļ āĻ­āĻŋāĻ¤ā§āϤāĻŋāĻ• āĻšāĻŦ⧇ āϏ⧇āϟāĻž āĻ•āĻŋāĻ¨ā§āϤ⧁ āϏāĻ¤ā§āϝāĻŋ āύāϝāĻŧ)
If = \[\frac{10}{4} = 4\] = 4, then 5 x 2 = ?
[The base of a number may not be 10]
2. āϚāĻŋāĻ¤ā§āϰ⧇ āĻāĻ•āϟāĻŋ āĻŦāĻ°ā§āϗ⧇āϰ āĻ­āĻŋāϤāϰ⧇ āφāϰ⧇āĻ•āϟāĻŋ āĻŦāĻ°ā§āĻ— āφāρāĻ•āĻž āφāϛ⧇āĨ¤ āĻāχ āϚāĻŋāĻ¤ā§āϰāϟāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻĒāĻŋāĻĨāĻžāĻ—ā§‹āϰāĻžāϏ⧇āϰ āϏ⧂āĻ¤ā§āϰāϟāĻŋ āĻĒā§āϰāϤāĻŋāĻĒāĻžāĻĻāύ āĻ•āϰ āĨ¤

%Focuse keyword%
In the figure there is a square inscribed in another square. Using this figure derive the Pythagorean Theorem.
3. āĻāĻ• āϞ⧋āϕ⧇āϰ āϚāĻžāϰ āϏāĻ¨ā§āϤāĻžāύāĨ¤ āĻĒā§āϰāĻĨāĻŽ āϏāĻ¨ā§āϤāĻžāύ⧇āϰ āĻŦāϝāĻŧāϏ āĻāĻ•āϟāĻŋ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ āĻāχ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ…āĻ‚āĻ• āϗ⧁āϞ⧋āϕ⧇ āϗ⧁āĻŖ āĻ•āϰāϞ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āϏāĻ¨ā§āϤāĻžāύ⧇āϰ āĻŦāϝāĻŧāϏ āĻāĻŦāĻ‚ āϝ⧋āĻ— āĻ•āϰāϞ⧇ āϤ⧃āϤ⧀āϝāĻŧ āϏāĻ¨ā§āϤāĻžāύ⧇āϰ āĻŦāϝāĻŧāϏ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧāĨ¤ āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āϏāĻ¨ā§āϤāĻžāύ⧇āϰ āĻŦāϝāĻŧāϏ⧇āϰ āĻ…āĻ™ā§āĻ•āϗ⧁āϞ⧋ āϝ⧋āĻ— āĻ•āϰāϞ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāϝāĻŧ āϚāϤ⧁āĻ°ā§āĻĨ āϏāĻ¨ā§āϤāĻžāύ⧇āϰ āĻŦāϝāĻŧāϏāĨ¤ āĻĒāϰ āĻĒāϰ āĻĻ⧁āχ āϏāĻ¨ā§āϤāĻžāύ⧇āϰ āĻŦāϝāĻŧāϏ⧇āϰ āĻŦā§āϝāĻŦāϧāĻžāύ 25 āĻŦāĻ›āϰ⧇āϰ āĻŦ⧇āĻļāĻŋ āύāĻž āĻšāϞ⧇ āĻ•āĻžāϰ āĻŦāϝāĻŧāϏ āĻ•āϤ?
A man has 4 children. The age of the first child is a square number. By multiplying the digits of this square number you will get the age of the second child and by summing the digits you will get the age of third child. If you add the digits of the age of the second child, you will get the age of fourth child. If the difference of age of two consecutive children is not more than 25 years, then find the ages of 4 children
8. \[ \log_{\left(x+3\right)}(x^2+15)=2 \] āĻšāϞ⧇ x=?
If \[ \log_{\left(x+3\right)}(x^2+15)=2 \], then x =?

5. āĻ¤ā§āϰāĻŋāϭ⧁āϜ āĻĻā§āĻŦāϝāĻŧ⧇āϰ āϝ⧇ āĻ…āĻ‚āĻļāϟ⧁āϕ⧁ āĻĒāϰāĻ¸ā§āĻĒāϰāϕ⧇ āϛ⧇āĻĻ āĻ•āϰ⧇āύāĻŋ (āĻĻāĻžāĻ— āĻŦāĻŋāĻšā§€āύ āĻ…āĻ‚āĻļ āϟ⧁āϕ⧁), āϤāĻžāĻĻ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ⧇āϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ āĻ•āϤ? āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤ⧇ āϝāĻĻāĻŋ āĻĻ⧁āϟāĻŋ āĻŦ⧃āĻ¤ā§āϤ āĻ•āĻŋāĻ‚āĻŦāĻž āĻ…āĻ¨ā§āϝ āϝ⧇āϕ⧋āύ āφāĻ•ā§ƒāϤāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ āĻāĻĻ⧇āϰ āĻĒāϰāĻ¸ā§āĻĒāϰāϕ⧇ āϛ⧇āĻĻ āĻ•āϰāϤ, āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻĢāϞāĻžāĻĢāϞ āϕ⧇āĻŽāύ āφāϏāϤ, āĻŽāĻ¨ā§āϤāĻŦā§āϝ āĻ•āϰ āĨ¤

%Focuse keyword%

Bangladesh math Olympiad questions

Find the difference between the non-shaded area (☐ ABDF and ∆FCE) of the triangles. Instead of triangles, if there were circles or any other shape, what would be the result – comment on that.

6. āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āĻ—āĻŖāĻŋāϤ, āχāĻ‚āϰ⧇āϜāĻŋ āĻ“ āĻŦāĻžāĻ‚āϞāĻž āĻ•ā§āϞāĻžāĻļ āĻļ⧁āϰ⧁ āĻšāϞ āĻŽāĻžāϏ⧇āϰ 1 āϤāĻžāϰāĻŋāϖ⧇āĨ¤ āĻ—āĻŖāĻŋāϤ āĻ•ā§āϞāĻžāĻļ āĻšāĻŦ⧇ 1,3,5,7,9. . . āϤāĻžāϰāĻŋāϖ⧇āĨ¤ āχāĻ‚āϰ⧇āϜāĻŋ āĻ•ā§āϞāĻžāĻļ 1,47,1013. āϤāĻžāϰāĻŋāϖ⧇ āĻāĻŦāĻ‚ āĻŦāĻžāĻ‚āϞāĻž āĻ•ā§āϞāĻžāĻļ 1,5,9,13,17. . . .āϤāĻžāϰāĻŋāϖ⧇āĨ¤ āĻĒā§āϰāĻĨāĻŽ 3 āĻŽāĻžāϏ⧇ āĻŽā§‹āϟ āĻ•āϤ āĻĻāĻŋāύ āϕ⧋āύ āĻ•ā§āϞāĻžāĻļāχ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āύāĻž? 30 āĻĻāĻŋāύ⧇ āĻŽāĻžāϏ āϧāϰ⧇ āύāĻžāĻ“ ⧎
Mathematics, English and Bangla classes started on the very first day of a month. Mathematics class schedule is 1,3,5,7,9. . . . The schedule for English is 1,4,7,10,13. . . . and for Bangla it is 1, 5, 9, 13, 17. In next 3 months how many vacations will you get ? Suppose all the months are of 30 days.
7. āĻāĻ•āϟāĻŋ āĻŦāϞāϕ⧇ āĻŽāĻžāϟāĻŋ āĻĨ⧇āϕ⧇ āωāĻĒāϰ⧇āϰ āĻĻāĻŋāϕ⧇ āωāϞāĻŽā§āĻŦ āĻ­āĻžāĻŦ⧇ āύāĻŋāĻ•ā§āώ⧇āĻĒ āĻ•āϰāĻžāϝāĻŧ āϏ⧇āϟāĻŋ 650 āĻŽāĻŋāϟāĻžāϰ āωāĻĒāϰ⧇ āωāĻ āϞāĨ¤ āĻĒā§āϰāϤāĻŋāĻŦāĻžāϰ āĻŦāϞāϟāĻŋ āĻŽāĻžāϟāĻŋ āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻ•āϰāĻžāϰ āĻĒāϰ āϤāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āωāĻšā§āϚāϤāĻžāϰ \[\frac25\] āĻ…āĻ‚āĻļ āωāĻĒāϰ⧇ āωāϠ⧇ āφāϏ⧇ āĨ¤ āĻĒā§āϰāĻĨāĻŽ 20 āĻŦāĻžāϰ āωāĻ āĻžāύāĻžāĻŽāĻžāϰ āĻĢāϞ⧇ āĻŦāϞāϟāĻŋāϰ āĻŽā§‹āϟ āĻ…āϤāĻŋāĻ•ā§āϰāĻžāĻ¨ā§āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ āĻ•āϤ āĻšāĻŦ⧇? āĻŦāϞāϟāĻŋ āϝāĻĻāĻŋ 1 āĻŦāĻžāϰ āωāĻ āĻžāύāĻžāĻŽāĻž āĻ•āϰ⧇ āϤāĻŦ⧇ āĻŽā§‹āϟ āĻ…āϤāĻŋāĻ•ā§āϰāĻžāĻ¨ā§āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ⧇āϰ āϏ⧂āĻ¤ā§āϰ āĻŦ⧇āϰ āĻ•āϰāĨ¤
A ball is thrown upward vertically to a height of 650 meters from ground. Each time it hits the ground, it bounces \[\frac25\] of the height it fell in the previous stage.How much the ball will travel during the first 20 bounces? And also derive the formula of determining the total length traveled during n number of bounces.
8. āĻāĻ•āϟāĻŋ āĻŦāĻ°ā§āϗ⧇āϰ āϤāĻŋāύ āϗ⧁āĻŖ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āφāϰ⧇āĻ•āϟāĻŋ āĻŦāĻ°ā§āĻ— āφāρāĻ• āĨ¤
Draw a square which has area that is three times the area of another given square.
9. \[\sqrt{−1 }\] āϕ⧇ āĻ•āĻžāĻ˛ā§āĻĒāύāĻŋāĻ• āĻŦāĻž āχāĻŽāĻžāϜāĻŋāύāĻžāϰāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž ‘i’ āĻŦāϞāĻž āĻšāϝāĻŧāĨ¤ āĻāϟāĻžāϕ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇
\[\frac{1 + i}{1 – i}\] āϏāĻŽāĻžāύ āĻ•āϤ āϤāĻž āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇?
\[\sqrt{−1 }\] is called the imaginary number ‘i’. Using this, can you find out the value of \[\frac{1 + i}{1 – i}\] ?
10. 4+7+13+25+……. . āϧāĻžāϰāĻžāϟāĻŋāϰ
1) āĻĒā§āϰāĻĨāĻŽ 20 āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ āĻŦ⧇āϰ āĻ•āϰ
2) āϧāĻžāϰāĻžāϟāĻŋāϰ āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ āĻ•āϤ?
Find the sum of first 20 terms of the series
4+7+13+25+. . . . . . ..
What is the sum of first n terms?
11. āĻāĻ•āϟāĻŋ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻŦāĻžāĻšā§ āϤāĻŋāύāϟāĻŋāϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ a, b, c āĻāĻŦāĻ‚ āĻāĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āĻšāϞ \[ a^2+b^2+c^2 [latex] = ab+bc+ca. āĻĒā§āϰāĻŽāĻžāĻŖ āĻ•āϰ āϝ⧇, āωāϞ⧇āĻ–āĻŋāϤ āĻ¤ā§āϰāĻŋāϭ⧁āϜāϟāĻŋ āĻāĻ•āϟāĻŋ āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āϜ āĨ¤
If a, b, c are sides of a triangle such that [latex] a^2+b^2+c^2 [latex] = ab+bc+ca. Show that the triangle is equilateral.
12. āϏāĻŽāĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻĻ⧁āϟāĻŋ āĻŦ⧃āĻ¤ā§āϤ āĻĒāϰāĻ¸ā§āĻĒāϰāϕ⧇ C āĻ“ D āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϤ⧇ āϛ⧇āĻĻ āĻ•āϰ⧇āĨ¤ āĻŦ⧃āĻ¤ā§āϤāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϕ⧇āĻ¨ā§āĻĻā§āϰ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ A āĻ“ BāĨ¤ āϝāĻĻāĻŋ āϤāĻžāĻĻ⧇āϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ 10 āĻāĻŦāĻ‚ ABC āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ 40 āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧇ A āĻ“ B āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻĻā§‚āϰāĻ¤ā§āĻŦ x āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤

%Focuse keyword%

Bangladesh Math Olympiad questions

Two circles of equal radius intersect each other at point C and D. The centers of the two circles are point A and B respectively. If their radius is 10 and the area of AABC is 40, then find the distance x between A and B.
13. āĻāĻ•āϟāĻŋ āĻŦāĻžāĻ•ā§āϏ⧇ 100 āϟāĻŋ āĻ•āĻžāϞ, ā§Ēā§ĻāϟāĻŋ āύ⧀āϞ, 60 āϟāĻŋ āϞāĻžāϞ āĻ“ 40 āϟāĻŋ āϏāĻžāĻĻāĻž āĻŽā§‹āϜāĻž āφāϛ⧇āĨ¤ āφāĻ¨ā§āĻĻāĻžāĻœā§‡ āĻŦāĻžāĻ•ā§āϏ āĻĨ⧇āϕ⧇ āĻāĻ•āϟāĻŋ āĻāĻ•āϟāĻŋ āĻ•āϰ⧇ āĻŽā§‹āϜāĻž āϤ⧋āϞāĻž āĻšāϞ, āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŽā§‹āϜāĻžāϰ āϰāĻ™ āĻ•āĻŋ āϤāĻž āĻŽā§‹āϜāĻžāϟāĻŋ āĻŦāĻžāĻ•ā§āϏ āĻĨ⧇āϕ⧇ āĻŦ⧇āϰ āύāĻž āĻ•āϰāĻž āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϜāĻžāύāĻž āϏāĻŽā§āĻ­āĻŦ āĻ›āĻŋāϞ āύāĻžāĨ¤ āϏāĻ°ā§āĻŦāύāĻŋāϧ āĻ•āϝāĻŧāϟāĻŋ āĻŽā§‹āϜāĻž āϤ⧁āϞāϞ⧇ āύāĻŋāĻļā§āϚāĻŋāϤ āĻšāĻ“āϝāĻŧāĻž āϝāĻžāĻŦ⧇ āϝ⧇ āĻ•āĻŽāĻĒāĻ•ā§āώ⧇ 10 āĻœā§‹āĻĄāĻŧāĻž āĻŽā§‹āϜāĻž āϤ⧋āϞāĻž āĻšāϝāĻŧ⧇āϛ⧇? (āĻāĻ• āĻœā§‹āĻĄāĻŧāĻž āĻŽā§‹āϜāĻž āĻŽāĻžāύ⧇ āĻĻ⧁āϟāĻŋ āĻāĻ•āχ āϰāϙ⧇āϰ āĻŽā§‹āϜāĻž)
A drawer in a room contains 100 black socks 80 blue socks, 60 red socks and 40 white socks. Someone randomly selects one sock at a time from the drawer, but is unable to the color of the sock until he has taken it out of the drawer. What is the smallest number of socks that must be taken out to guarantee that at least 10 pairs have been taken out? [A pair of sock = 2 socks of the same color]

Secondary Category
1. [latex] x^x = y\] āĻāĻŦāĻ‚ \[ y^y = y \] āĻšāϞ⧇ × āĻ“ y āĻāϰ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻŽāĻžāϧāĻžāύ
(x, y)) āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤
Solve for (x, y) in real number where \[ x^x = y\] and \[ y^y = y \]
2. 1 āĻĨ⧇āϕ⧇ 100 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻĒāϰāĻĒāϰ āϞāĻŋāϖ⧇ āĻāĻ•āϟāĻŋ āĻŦāĻĄāĻŧ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž N āĻ—āĻ āύ āĻ•āϰāĻž āĻšāϞ, , āĻ…āĻ°ā§āĻĨāĻžā§Ž
N = 123456789101112…9899100 | N āϕ⧇ 3 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ•āϤ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻĨāĻžāĻ•āĻŦ⧇ ?

Writing down all the integers from 1 to 100 we make a large integer N.
N = 123456789101112…9899100. What will be remainder if we divide N by 3?
3. āĻāĻ•āϟāĻŋ āĻŦāĻ°ā§āϗ⧇āϰ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ 2 āĻāĻ•āĻ• āĨ¤ āϧāϰāĻž āϝāĻžāĻ•, s āĻšāϞ āĻāĻŽāύ āĻāĻ•āϟāĻŋ āϏ⧇āϟ āϝāĻžāϰ āωāĻĒāĻžāĻĻāĻžāύ āĻšāϞ 2 āĻāĻ•āĻ• āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻāĻŽāύ āϏāĻŦ āϰ⧇āĻ–āĻžāĻ‚āĻļ āϝāĻžāĻĻ⧇āϰ āĻĒā§āϰāĻžāĻ¨ā§āϤ āĻŦāĻŋāĻ¨ā§āĻĻ⧁ āĻĻā§āĻŦāϝāĻŧ āĻŦāĻ°ā§āĻ—āϟāĻŋāϰ āϏāĻ¨ā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āϗ⧁āϞ⧋āϰ āωāĻĒāϰ āĻ…āĻŦāĻ¸ā§āĻĨāĻŋāϤ āĨ¤ āφāϰ⧋ āϧāϰāĻž āϝāĻžāĻ• L āĻšāϞ āĻāĻŽāύ āĻāĻ•āϟāĻŋ āϏ⧇āϟ āϝāĻž s āϏ⧇āĻŸā§‡āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ­ā§‚āĻ•ā§āϤ āϰ⧇āĻ–āĻžāĻ‚āĻļāϗ⧁āϞ⧋āϰ āĻŽāĻ§ā§āϝāĻŦāĻŋāĻ¨ā§āĻĻ⧁ āϏāĻŽā§‚āĻšā§‡āϰ āϏāĻŽāĻ¨ā§āύāϝāĻŧ⧇ āĻ—āĻ āĻŋāϤāĨ¤ L āĻĻā§āĻŦāĻžāϰāĻž āφāĻŦāĻĻā§āϧ āĻ•ā§āώ⧇āĻ¤ā§āϰāϟāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤
A square has sides of length 2. Let S is the set of all line segments that have length 2 and whose endpoints are on adjacent side of the square. Say L is the set of the midpoints of all segments in S. Find out the area enclosed by L.
āĻāĻ•āϟāĻŋ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻĻ⧁āϟāĻŋ āĻœā§āϝāĻž āĻāϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 10 āĻ“ 14 āĻāĻ•āĻ• āĨ¤ āĻāĻĻ⧇āϰ āĻŽāĻ§ā§āϝāĻŦāĻ°ā§āϤ⧀ āĻĻā§‚āϰāĻ¤ā§āĻŦ 6 āĻāĻ•āĻ•āĨ¤ āĻœā§āϝāĻžāĻĻā§āĻŦāϝāĻŧ āĻšāϤ⧇ āϏāĻŽāĻĻā§‚āϰāĻ¤ā§āĻŦ⧇ āĻāĻŽāύ āφāϰ⧇āĻ•āϟāĻŋ āĻœā§āϝāĻž āϰāϝāĻŧ⧇āϛ⧇ āϝāĻž āωāϞ⧇āĻ–āĻŋāϤ āĻœā§āϝāĻžāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻāĻŦāĻ‚ āϝāĻžāϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ \[\sqrt{a}\]āĨ¤ a āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤
Two parallel chords of a circle have length 10 and 14. The distance between them is 6. The chord parallel to these chords and half way between them has length \[\sqrt{a}\]. Find a .
5. āĻāĻ•āϟāĻŋ āĻŦāϞāϕ⧇ āĻŽāĻžāϟāĻŋ āĻĨ⧇āϕ⧇ āωāĻĒāϰ⧇āϰ āĻĻāĻŋāϕ⧇ āωāϞāĻŽā§āĻŦ āĻ­āĻžāĻŦ⧇ āύāĻŋāĻ•ā§āώ⧇āĻĒ āĻ•āϰāĻžāϝāĻŧ āϏ⧇āϟāĻŋ 650 āĻŽāĻŋāϟāĻžāϰ āωāĻĒāϰ⧇ āωāϠ⧇ āύāĻŋāĻšā§‡ āύāĻžāĻŽāϤ⧇ āĻļ⧁āϰ⧁ āĻ•āϰāϞāĨ¤ āĻĒā§āϰāϤāĻŋāĻŦāĻžāϰ āĻŦāϞāϟāĻŋ āĻŽāĻžāϟāĻŋ āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻ•āϰāĻžāϰ āĻĒāϰ āϤāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āωāĻšā§āϚāϤāĻžāϰ \[\frac25 \] āĻ…āĻ‚āĻļ āωāĻĒāϰ⧇ āωāϠ⧇ āφāϏ⧇āĨ¤ āĻĨ⧇āĻŽā§‡ āϝāĻžāĻ“āϝāĻŧāĻžāϰ āφāĻ— āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŦāϞāϟāĻŋ āĻŽā§‹āϟ āĻ•āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ āĻ…āϤāĻŋāĻ•ā§āϰāĻŽ āĻ•āϰāĻŦ⧇? A ball is thrown upward vertically to a height of 650 meters from ground. Each time it hits the ground, it bounces \[\frac25 \] of the height it fell in the previous stage. How much the ball will travel before it stops?
6. |x+y|+|x−y|= 4 āĻāχ āĻ•ā§āώ⧇āĻ¤ā§āϰāϟāĻŋ āĻĻā§āĻŦāĻžāϰāĻž āϏ⧀āĻŽāĻžāĻŦāĻĻā§āϧ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰ, āϝ⧇āĻ–āĻžāύ⧇ x āĻ“ y āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž āĨ¤
What is the area bounded by the region|x + y|+|x – y = 4. Where x,y are real numbers.
7. \[\sqrt{1+2+3+……+ n} \] āĻāĻ•āϟāĻŋ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ⧇ n āĻāϰ āϏāĻ°ā§āĻŦāύāĻŋāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰ, āϝ⧇āĻ–āĻžāύ⧇ n āĻāĻ•āϟāĻŋ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž āĻāĻŦāĻ‚ 1 < n < 10 |
Find the smallest positive integer n >1, such that \[\sqrt{1+2+3+……+ n} \] is an integer. Note: n < 10.
8. āϝāĻĻāĻŋ \[ m + 12 = p^a \] āĻāĻŦāĻ‚ \[ m – 12 = p^b \] āĻšāϝāĻŧ, āϝ⧇āĻ–āĻžāύ⧇ a,b,m āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž āĻāĻŦāĻ‚ P āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ p > 0 āĻāϰ āϏāĻŽā§āĻ­āĻžāĻŦā§āϝ āϏāĻ•āϞ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻŽāĻžāύ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤ (āϖ⧇āϝāĻŧāĻžāϞ āĻ•āϰ, P āĻāϰ āϕ⧇āĻŦāϞ āϤāĻŋāύāϟāĻŋ āĻŽāĻžāύ āϏāĻŽā§āĻ­āĻŦāĨ¤)
If \[ m + 12 = p^a \] and \[ m – 12 = p^b \] where a,b,m are integers and p is a prime number. Find all possible primes P> 0. [Note: P only takes three values]
9. \[ x^3 + bx^2 + 3x + 11 \] āϰāĻžāĻļāĻŋāϟāĻŋāϰ āĻāĻ•āϟāĻŋ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• \[ x^2 + 3x – 4 \] āĻšāϞ⧇ b āĻ“ c āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤
If \[ x^2 + 3x – 4 \] is a factor of \[ x^3 + bx^2 + 3x + 11 \], then find the values of b and c.

Junior Math Olympiad problems PDF

10. āĻāĻ•āϟāĻŋ āĻŦāĻžāĻ•ā§āϏ⧇ 100 āϟāĻŋ āĻ•āĻžāϞ, ā§Ēā§ĻāϟāĻŋ āύ⧀āϞ, 60 āϟāĻŋ āϞāĻžāϞ āĻ“ 40 āϟāĻŋ āϏāĻžāĻĻāĻž āĻŽā§‹āϜāĻž āφāϛ⧇ āĨ¤ āφāĻ¨ā§āĻĻāĻžāĻœā§‡ āĻŦāĻžāĻ•ā§āϏ āĻĨ⧇āϕ⧇ āĻāĻ•āϟāĻŋ āĻāĻ•āϟāĻŋ āĻ•āϰ⧇ āĻŽā§‹āϜāĻž āϤ⧋āϞāĻž āĻšāϞ, āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŽā§‹āϜāĻžāϰ āϰāĻ™ āĻ•āĻŋ āϤāĻž āĻŽā§‹āϜāĻžāϟāĻŋ āĻŦāĻžāĻ•ā§āϏ āĻĨ⧇āϕ⧇ āĻŦ⧇āϰ āύāĻž āĻ•āϰāĻž āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϜāĻžāύāĻž āϏāĻŽā§āĻ­āĻŦ āĻ›āĻŋāϞ āύāĻžāĨ¤ āϏāĻ°ā§āĻŦāύāĻŋā§° āĻ•āϝāĻŧāϟāĻŋ āĻŽā§‹āϜāĻž āϤ⧁āϞāϞ⧇ āύāĻŋāĻļā§āϚāĻŋāϤ āĻšāĻ“āϝāĻŧāĻž āϝāĻžāĻŦ⧇ āϝ⧇ 10 āĻœā§‹āĻĄāĻŧāĻž āĻŽā§‹āϜāĻž āϤ⧋āϞāĻž āĻšāϝāĻŧ⧇āϛ⧇? (āĻāĻ• āĻœā§‹āĻĄāĻŧāĻž āĻŽā§‹āϜāĻž āĻŽāĻžāύ⧇ āĻĻ⧁āϟāĻŋ āĻāĻ•āχ āϰāϙ⧇āϰ āĻŽā§‹āϜāĻž) A drawer in a room contains 100 black socks 80 blue socks, 60 red socks and 40 purple socks. Someone randomly selects one sock at a time from the drawer, but is unable to the color of the sock until he has taken it out of the drawer. What is the smallest number of socks that must be taken out to guarantee that 10 pairs have been taken out? [A pair of sock = 2 socks of the same color]

11. 5, 6 āĻāĻŦāĻ‚ 7 āĻāĻ•āĻ• āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻāĻ•āϟāĻŋ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ…āĻ­ā§āϝāĻ¨ā§āϤāϰ⧇ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻŦāĻĄāĻŧ āϝ⧇ āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰāϟāĻŋ āφāρāĻ•āĻž āϏāĻŽā§āĻ­āĻŦ, āϤāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāĨ¤
Find the area of the largest square inscribed in a triangle of sides 5,6 and 7.
12. \[ (x^{100} – 2x^{51} + 1) \] āϕ⧇ \[ (x^2 – 1) \] āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻ•āϤ āĻšāĻŦ⧇?
Find the remainder on dividing \[ (x^{100} – 2x^{51} + 1) \] by \[ (x^2 – 1) \]
14. āĻĒā§āϰāĻŽāĻžāĻŖ āĻ•āϰ āϝ⧇, āĻĻ⧁āϟāĻŋ āĻĒā§‚āĻ°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āϞāĻĢāϞ āϤāĻžāĻĻ⧇āϰ āϞ.āϏāĻž.āϗ⧁ āĻāĻŦāĻ‚ āĻ—.āϏāĻž.āϗ⧁ āĻāϰ āϗ⧁āĻŖāĻĢāϞ⧇āϰ āϏāĻŽāĻžāύāĨ¤
Prove that if a and b are two integers, then a × b = LCM(a,b) × GCD(a,b).

 

2007_national_higher_secondary

2007_national_junior

2007_national_primary

2007_national_secondary

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top