BD math olympiad 2022 Selection Questions
āĻĒā§āϰāĻžāĻĨāĻŽāĻŋāĻ āĻŦāĻŋāĻāĻžāĻ (ā§§āĻŽ-⧍āϝāĻŧ āĻļā§āϰā§āĻŖāĻŋ):
ā§§. āĻā§āύ⧠āĻŦāĻāϰā§āϰ ā§§āϞāĻž āĻāĻžāύā§āϝāĻŧāĻžāϰāĻŋ āϰāĻŦāĻŋāĻŦāĻžāϰ āĻšāϞā§, āϏā§āĻ āĻāĻžāύā§āϝāĻŧāĻžāϰāĻŋ āĻŽāĻžāϏā§āϰ āĻļā§āώ āĻŽāĻā§āĻāϞāĻŦāĻžāϰ āĻāĻŦā§?
1st January of a year is Sunday. What date is the last Tuesday of that January?
⧍. āĻĻā§āĻāĻŋ āϤā§āϰāĻŋāĻā§āĻ āĻĒāϰāϏā§āĻĒāϰā§āϰ āϏāĻžāĻĨā§ āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āĻāϤāĻā§āϞ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰāϤ⧠āĻĒāĻžāϰā§, āϝā§āĻāĻžāύ⧠āĻā§āύ⧠āĻĻā§āĻ āĻŦāĻžāĻšā§ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āύāϝāĻŧ?
What is the maximum number of intersection points two triangles can have, where no two sides are parallel?
ā§Š. ā§Šā§Ļ⧍⧧ āĻāϰ āĻŽā§āĻ āĻāϤāĻāĻŋ āĻŽā§āϞāĻŋāĻ āĻā§āĻĒāĻžāĻĻāĻ āĻāĻā§?
How many prime factors does 3021 have?
ā§Ē. đĨ āĻāĻŦāĻ đĻ āĻĻā§āĻāĻāĻŋ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāĨ¤ đĨ āĻā§ ā§Ē āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāϞ⧠āĻāĻžāĻāĻļā§āώ đ, āĻāĻŦāĻ đĻ āĻā§ ā§ āĻĻāĻŋāϝāĻŧā§ āĻāĻžāĻ āĻāϰāϞ⧠āĻāĻžāĻāĻļā§āώ đāĨ¤ đ + đ-āĻāϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻŽāĻžāύ āĻāϤ?
đĨ and đĻ are two natural numbers. đĨ when divided by 4 leaves a remainder đ, and đĻ when divided by 7 leaves a remainder đ. What is the largest value of (đ + đ)?
ā§Ģ. āĻāĻ āϧāĻžāϰāĻž ā§Ē, ⧧⧍, ⧍ā§Ģ, ā§Ēā§Š-āĻāϰ āĻĒāϰāĻŦāϰā§āϤ⧠āϏāĻāĻā§āϝāĻž āĻā§?
What is the next number of this sequence: 4, 12, 25, 43?
ā§Ŧ. \[2022^9\]-āĻāϰ āĻļā§āώ āĻ
āĻā§āĻāĻāĻŋ āĻā§?
What is the last digit of \[ 2022^9 \]?
ā§. āϝāĻĻāĻŋ āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ ⧍ā§Ģ āĻšāϝāĻŧ, āϤāĻŦā§ āĻāϰ ā§Ē āĻā§āĻŖ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž āĻāϤ?
The area of a square is 25. Find the perimeter of a square with 4 times the area of the first square.
ā§Ž. ⧍ā§Ļā§Ļā§Ē āϏāĻžāϞā§āϰ āĻĄāĻŋāϏā§āĻŽā§āĻŦāϰ āĻŽāĻžāϏ⧠āĻāĻāĻāĻŋ āĻā§āϰāĻš āĻāĻŦāĻŋāώā§āĻā§āϤ āĻšāϝāĻŧāĨ¤ āĻĻā§āĻāĻž āĻā§āĻā§, āĻĒā§āϰāϤāĻŋ ā§Š āĻŦāĻāϰ⧠āĻāĻžāύā§āϝāĻŧāĻžāϰāĻŋ āĻŽāĻžāϏ⧠āĻāύāϏāĻāĻā§āϝāĻž āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻšāϝāĻŧ āĻāĻŦāĻ āĻĒā§āϰāϤāĻŋ ā§Ŧ āĻŦāĻāϰ⧠āĻŽāĻžāϰā§āĻ āĻŽāĻžāϏ⧠āϤāĻž ā§§/ā§Ŧ āĻšāϝāĻŧā§ āϝāĻžāϝāĻŧāĨ¤ ⧍ā§Ļ⧍⧍ āϏāĻžāϞā§āϰ āĻĄāĻŋāϏā§āĻŽā§āĻŦāϰ⧠āĻāύāϏāĻāĻā§āϝāĻž āϝāĻĻāĻŋ ā§Ģ⧧⧍ āĻšāϝāĻŧ, āϤāĻŦā§ āĻāĻŦāĻŋāώā§āĻāĻžāϰā§āϰ āϏāĻŽāϝāĻŧ āĻāύāϏāĻāĻā§āϝāĻž āĻāϤ āĻāĻŋāϞ?
BdMO scientists discovered a planet in December 2004. The population doubles in January every 3rd year and decreases to one-sixth in March every 6th year. If the population in December 2022 is 512, what was the population when the planet was discovered?
⧝. āĻĄāĻāĻā§āϞ⧠āϏāĻāϝā§āĻā§āϤ āĻāϰ⧠āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āĻāϤāĻā§āϞ⧠āĻŦāϰā§āĻ āϤā§āϰāĻŋ āĻāϰāĻž āϝāĻžāϝāĻŧ?
How many squares can be made by connecting the dots from the picture?
ā§§ā§Ļ. āĻāĻāĻāĻŋ āĻāϞāĻŽ, āĻāĻāĻāĻŋ āĻŦāĻ āĻāĻŦāĻ āĻāĻāĻāĻŋ āĻŦāϞ āĻāĻŦā§āϞ āĻ āĻāĻžāĻŦā§āϞā§āϰ āĻŽāϧā§āϝ⧠āĻā§āĻāĻžāĻŦā§ āĻāĻžāĻ āĻāϰāĻž āϝāĻžāĻŦā§ āϝāĻžāϤ⧠āĻĒā§āϰāϤā§āϝā§āĻā§ āĻ
āύā§āϤāϤ āĻāĻāĻāĻŋ āĻāĻŋāύāĻŋāϏ āĻĒāĻžāϝāĻŧ?
How many ways can one pen, one book, and one ball be distributed between Abul and Kabul so that each person gets at least one object?
Bangladesh Math Olympiad 2022 selection questions
āĻā§āύāĻŋāϝāĻŧāϰ āĻŦāĻŋāĻāĻžāĻ (ā§ŠāϝāĻŧ-ā§Ēāϰā§āĻĨ āĻļā§āϰā§āĻŖāĻŋ):
ā§§. ā§Šā§Ļā§Ļā§Š-āĻāϰ āϏāĻŦ āĻŽā§āϞāĻŋāĻ āĻā§āĻĒāĻžāĻĻāĻā§āϰ āϝā§āĻāĻĢāϞ āĻāϤ?
What is the sum of all the prime factors of 3003?
⧍. āϝāĻĻāĻŋ đ āĻāĻāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž āĻšāϝāĻŧ, āϤāĻŦā§ \[ 7777^đ\]-āĻāϰ āĻāĻāύāĻŋāĻ āĻĄāĻŋāĻāĻŋāĻā§āϰ āĻāϤāĻāĻŋ āĻāĻŋāύā§āύ āĻŽāĻžāύ āĻšāϤ⧠āĻĒāĻžāϰā§?
If đ is a positive integer, then how many distinct units digits can \[7777^đ\] have?
ā§Š. āĻāĻāĻāĻŋ āϏāĻžāĻŽāύā§āϤāϰāĻŋāĻā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§āĻā§āϞā§āϰ āĻĻā§āϰā§āĻā§āϝ ā§Ē āĻāĻŦāĻ ā§Ž, āĻāĻŦāĻ āĻāĻā§āĻāϤāĻž ā§ŦāĨ¤ āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ?
The lengths of the parallel sides of a trapezium are 4, 8, and its height is 6. Find its area.
ā§Ē. āĻāĻāĻāĻŋ āĻĻā§āĻ āĻ
āĻā§āĻā§āϰ āϏāĻāĻā§āϝāĻžāϝāĻŧ, āĻĻāĻļāĻā§āϰ āĻ
āĻā§āĻ āĻāĻāĻā§āϰ āĻ
āĻā§āĻā§āϰ āĻā§āϝāĻŧā§ āĻŦāĻĄāĻŧ āĻāĻŦāĻ āĻāĻāĻā§āϰ āĻ
āĻā§āĻ āĻļā§āύā§āϝ āύāϝāĻŧāĨ¤ āĻĻāĻļāĻā§āϰ āĻ
āĻā§āĻ āĻ āĻāĻāĻā§āϰ āĻ
āĻā§āĻā§āϰ āĻā§āĻŖāĻĢāϞ āϤāĻžāĻĻā§āϰ āϝā§āĻāĻĢāϞ⧠āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤ āĻāĻ āϏāĻāĻā§āϝāĻž āĻāϤ?
In a two-digit number, the tens digit is greater than the units digit, and the units digit is nonzero. The product of these two digits is divisible by their sum. What is this two-digit number?
ā§Ģ. ABCD āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ E āĻŦāĻŋāύā§āĻĻā§ ABEA-āĻāϰ āĻāĻžāĻĒā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ āĻāĻžāϞ⧠āĻ
āĻāĻļā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ (đ + đĪ) āĻāĻāĻžāϰ⧠āϞā§āĻāĻž āϝāĻžāϝāĻŧāĨ¤ (đ + đ) āĻāϰ āĻŽāĻžāύ āĻāϤ? AB = 20, BC = 18
In a rectangle ABCD, E is the midpoint of arc ABEA. The area of the black region can be expressed as (đ + đĪ), where (đ, đ) are integers. Compute (đ + đ). AB = 20, BC = 18.
ā§Ŧ. āĻĸāĻžāĻāĻžāĻā§āϰāĻžāĻŽā§ āĻŦāϰā§āϤāĻŽāĻžāĻ¨ā§ ā§Šā§ĻāĻāĻŋ āĻŦāĻžāϏ āĻĒā§āϰāϤāĻŋāĻĻāĻŋāύ āĻāĻĄāĻŧā§ ā§Ēā§Ļā§Ļ āĻāύ āϝāĻžāϤā§āϰ⧠āĻĒāϰāĻŋāĻŦāĻšāύ āĻāϰā§āĨ¤ āύāϤā§āύ āĻŦāĻžāϏ āϝā§āĻ āĻāϰāϞ⧠āĻĒā§āϰāϤāĻŋ āĻŦāĻžāϏā§āϰ āĻāĻĄāĻŧ āϝāĻžāϤā§āϰ⧠āϏāĻāĻā§āϝāĻž ā§§ā§Ļ āĻāύ āĻāĻŽā§ āϝāĻžāϝāĻŧāĨ¤ āĻĒā§āϰāϤāĻŋāĻĻāĻŋāύ āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āϝāĻžāϤā§āϰ⧠āĻĒāϰāĻŋāĻŦāĻšāύā§āϰ āĻāύā§āϝ āĻ āĻŋāĻ āĻāϤāĻāĻŋ āĻŦāĻžāϏ āϝā§āĻ āĻāϰāĻž āĻāĻāĻŋāϤ?
Dhakagram city currently has 30 buses, each carrying 400 passengers daily. If adding one bus decreases average passengers per bus by 10, how many extra buses maximize daily passengers?
ā§. ⧍ā§Ļ⧍⧍ āĻĨā§āĻā§ ā§¨ā§Šā§Žā§Ž-āĻāϰ āĻŽāϧā§āϝ⧠āĻāĻŽāύ āĻāϤāĻā§āϞ⧠āϏāĻāĻā§āϝāĻž āĻāĻā§, āϝā§āĻā§āϞā§āϰ āĻāĻžāϰāĻāĻŋ āĻāĻŋāύā§āύ āĻ
āĻā§āĻ āĻā§āϰāĻŽāĻžāύā§āϏāĻžāϰ⧠āϏāĻžāĻāĻžāύā§?
How many integers between 2022 and 2388 have four distinct digits arranged in increasing order?
ā§Ž. ⧝Ã⧝ āĻĻāĻžāĻŦāĻžāϰ āĻŦā§āϰā§āĻĄā§ āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āĻāϤāĻāĻŋ āĻšāĻžāϤāĻŋ āĻŦāϏāĻžāύ⧠āϝāĻžāĻŦā§ āϝāĻžāϤ⧠āϤāĻžāϰāĻž āĻāĻā§ āĻ
āĻĒāϰāĻā§ āĻāĻā§āϰāĻŽāĻŖ āύāĻž āĻāϰā§?
What is the maximum number of bishops that can be placed on a 9Ã9 chessboard so that no two bishops attack each other?
⧝. BDMOLAND-āĻāϰ āϰāĻžāĻāĻž āϤā§āύāĻžāĻā§ āĻĒā§āϰāĻĨāĻŽ āĻĻāĻŋāύ ā§§ āĻāĻžāĻāĻž āĻĻāĻŋāϝāĻŧā§āĻā§āύ āĻāĻŦāĻ āĻĒā§āϰāϤāĻŋāĻĻāĻŋāύ āĻāĻā§āϰ āĻĻāĻŋāύā§āϰ āĻĻā§āĻŦāĻŋāĻā§āĻŖ āĻāĻžāĻāĻž āĻĻāĻŋāϤ⧠āϰāĻžāĻāĻŋāĨ¤ āϤā§āύāĻž āĻĒā§āϰāϤāĻŋāĻĻāĻŋāύ āĻāĻžāĻāĻž āύāĻŋāϤ⧠āϝāĻžāϝāĻŧāύāĻŋ āĻāĻŦāĻ āĻŽā§āĻ ā§Ŧ āĻĻāĻŋāĻ¨ā§ ā§Šā§§ āĻāĻžāĻāĻž āĻĒā§āϝāĻŧā§āĻā§āĨ¤ āϤā§āύāĻž āĻāϝāĻŧāĻĻāĻŋāύ āĻāĻžāĻāĻž āύāĻŋāϤ⧠āĻāĻŋāϝāĻŧā§āĻāĻŋāϞ?
The king of BdMOLAND gave Tunna 1 taka on the first day, doubling the amount every day. However, Tunna skipped some days and collected a total of 31 taka in 6 days. On how many days did she collect money?
ā§§ā§Ļ. ā§§ āĻĨā§āĻā§ ā§Ēā§Ēā§Ē āĻĒāϰā§āϝāύā§āϤ āϏāĻŦ āϏāĻāĻā§āϝāĻžāϰ āĻ
āĻā§āĻāĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ āĻāϤ?
Find the summation of all the digits of the numbers from 1 to 444.
BDMO 2022 math questions PDF
āϏā§āĻā§āύā§āĻĄāĻžāϰāĻŋ āĻŦāĻŋāĻāĻžāĻ (ā§ĢāĻŽ-ā§Ŧāώā§āĻ āĻļā§āϰā§āĻŖāĻŋ):
ā§§. \[ 2022^7 \]-āĻāϰ āĻļā§āώ āĻ
āĻā§āĻāĻāĻŋ āĻā§?
What is the last digit of \[2022^7\]?
⧍. āϝāĻĻāĻŋ āĻāĻāĻāĻŋ āϏāĻŽāĻŦāĻžāĻšā§ āϰāĻŽā§āĻŦāϏā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ ā§Ģā§Ē āĻšāϝāĻŧ āĻāĻŦāĻ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž āĻšāϝāĻŧ, āϤāĻŦā§ āϏāϰā§āĻŦāĻŽā§āĻ āĻāϤāĻāĻŋ āϰāĻŽā§āĻŦāϏ āĻāĻāĻāĻž āϏāĻŽā§āĻāĻŦ?
The area of a rhombus is 54. If the lengths of the diagonals are integers, how many different rhombuses can be drawn?
ā§Š. \[\triangle ABC\] āĻāĻāĻāĻŋ āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻāĨ¤ AB = AC, āĻāĻŦāĻ D āĻ F āϝāĻĨāĻžāĻā§āϰāĻŽā§ AB āĻ AC-āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ DF || BCāĨ¤ āϝāĻĻāĻŋ AB = 32, āϤāĻŦā§ \[\triangle DMF\]-āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ?
In \[\triangle ABC\], AB = AC, and D and Fare the midpoints of AB and AC, respectively. DF || BC. Find the area of \[\triangle DMF\] if AB = 32.
Bangladesh Olympiad 2022 math practice questions
ā§Ē. āϏāĻāĻžāϞ ā§§ā§ĻāĻāĻžāϝāĻŧ āĻāĻāĻāĻŋ āϞāĻžāĻ āĻŋāϰ āĻāĻžāϝāĻŧāĻžāϰ āĻĻā§āϰā§āĻā§āϝ ā§Ēā§Ŧ āϏā§āĻŽāĻŋ āĻšāϝāĻŧāĨ¤ āĻĻā§āĻĒā§āϰ ā§§āĻāĻžāϝāĻŧ āĻāĻžāϝāĻŧāĻžāϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āĻšāĻŦā§? (āϏā§āϰā§āϝā§āϰ āĻ
āĻŦāϏā§āĻĨāĻžāύā§āϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ ā§ā§Ģ°)
At 10 am, a stick perpendicular to the ground has a shadow equal to its length 46 cm. At 1 pm, what will be the length of its shadow? The difference in the sunâs position is 75°.
ā§Ģ. āĻĸāĻžāĻāĻžāĻā§āϰāĻžāĻŽā§ āĻŦāϰā§āϤāĻŽāĻžāĻ¨ā§ ā§Šā§ĻāĻāĻŋ āĻŦāĻžāϏāĨ¤ āύāϤā§āύ āĻŦāĻžāϏ āϝā§āĻ āĻāϰāϞ⧠āĻĒā§āϰāϤāĻŋ āĻŦāĻžāϏā§āϰ āĻāĻĄāĻŧ āϝāĻžāϤā§āϰ⧠āϏāĻāĻā§āϝāĻž ā§§ā§Ļ āĻāύ āĻāĻŽā§ āϝāĻžāϝāĻŧāĨ¤ āϏāϰā§āĻŦāĻžāϧāĻŋāĻ āϝāĻžāϤā§āϰ⧠āĻĒāϰāĻŋāĻŦāĻšāύā§āϰ āĻāύā§āϝ āĻāϤāĻāĻŋ āĻŦāĻžāϏ āϝā§āĻ āĻāϰāĻž āĻāĻāĻŋāϤ?
Dhakagram city currently has 30 buses. If adding a bus decreases passengers per bus by 10, how many buses should be added to maximize daily passengers?
ā§Ŧ. ā§Šā§Ģ-āĻāϰ āϏāĻŦ āĻā§āĻĒāĻžāĻĻāĻ āĻĻāĻŋāϝāĻŧā§ đ/b āĻāĻāĻžāϰ⧠āĻāĻ āĻŋāϤ āĻāĻā§āύāĻžāĻāĻļāĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ đ/nāĨ¤ āĻāĻāĻžāύ⧠đ, n āϏāĻšāĻŽā§āϞāĻŋāĻāĨ¤ (đ + n)-āĻāϰ āĻŽāĻžāύ āĻāϤ?
The sum of fractions formed as đ/b, where (đ, b) are divisors of 35, is expressed as đ/n. Find (đ + n), where (đ, n) are co-primes.
ā§. āϝāĻĻāĻŋ f(x+3) = f(x+1) + 4x + 12 āĻāĻŦāĻ f(0) = 2, āϤāĻŦā§ f(500)-āĻāϰ āĻŽāĻžāύ āĻāϤ?
If f(x+3) = f(x+1) + 4x + 12 and f(0) = 2, find \(f(500)\).
ā§Ž. āĻāĻāĻāĻŋ āĻāĻā§āĻāĻž āϤāĻŋāύāĻŦāĻžāϰ āĻĢā§āϞāĻž āĻšāϞā§, āĻĒā§āϰāϤāĻŋ āĻŦāĻžāϰ āϏāĻāĻā§āϝāĻž āĻāĻā§āϰ āϏāĻāĻā§āϝāĻžāϰ āĻā§āϝāĻŧā§ āĻā§āĻ āĻšāĻāϝāĻŧāĻžāϰ āϏāĻŽā§āĻāĻžāĻŦā§āϝāϤāĻž m : n āĻāĻāĻžāϰ⧠āϞā§āĻāĻž āϝāĻžāϝāĻŧ, āϝā§āĻāĻžāύ⧠(m, n) āϏāĻšāĻŽā§āϞāĻŋāĻāĨ¤ (m + n)-āĻāϰ āĻŽāĻžāύ āĻāϤ?
A dice is thrown three times. The probability that the number is less than the previous roll can be expressed as m : n, where (m, n) are co-primes. Find m + n.
⧝. āĻĒāϰāĻĒāϰ āĻĻā§āĻāĻŋ āĻĒā§āϰā§āĻŖ āĻŦāϰā§āĻāϏāĻāĻā§āϝāĻžāϰ āĻĒāĻžāϰā§āĻĨāĻā§āϝ ā§Šā§Ļ⧍⧍-āĻāϰ āĻā§āϝāĻŧā§ āĻāĻŽ āĻšāϞā§, āĻāĻŽāύ āĻāϤāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻāĻā§?
How many pairs of consecutive perfect square numbers have a difference less than 3022?
ā§§ā§Ļ. āϤāĻŋāύāĻāĻŋ āĻŦā§āϝāĻžāĻ (A, B, C) āϝāĻĨāĻžāĻā§āϰāĻŽā§ āĻĒā§āϰāϤāĻŋ ⧍āϝāĻŧ, ā§ŠāϝāĻŧ āĻ ā§ĢāĻŽ āĻĒāĻžāĻĨāϰ⧠āϞāĻžāĻĢ āĻĻā§āϝāĻŧāĨ¤ āϤāĻžāϰāĻž āĻā§āύ āĻĒāĻžāĻĨāϰ⧠āĻāĻŦāĻžāϰ āĻāĻāϤā§āϰ⧠āĻĻā§āĻāĻž āĻāϰāĻŦā§?
Three frogs (A, B, C) jump to every 2nd, 3rd, and 5th stone, respectively. In which stone will they meet again?
Math Olympiad selection questions Bangladesh 2022
āĻāĻā§āĻ āĻŽāĻžāϧā§āϝāĻŽāĻŋāĻ āĻŦāĻŋāĻāĻžāĻ (ā§āĻŽ-ā§ŽāĻŽ āĻļā§āϰā§āĻŖāĻŋ):
ā§§.\[7777^{2022}\]-āĻāϰ āĻļā§āώ āĻ
āĻā§āĻāĻāĻŋ āĻā§?
What is the last digit of \[7777^{2022}\]?
⧍. \[4n^2\] āϝāĻĻāĻŋ āϏāϰā§āĻŦā§āĻā§āĻ āϤāĻŋāύ āĻ
āĻā§āĻā§āϰ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻšāϝāĻŧ, āϤāĻŦā§ n-āĻāϰ āĻŽāĻžāύ āĻāϤ?
Let \[4n^2\] be the largest three-digit square number. What is the value of n?
ā§Š. 777 āĻĨā§āĻā§ 2222 āĻĒāϰā§āϝāύā§āϤ āĻāϤāĻāĻŋ āϏāĻāĻā§āϝāĻž āĻāĻā§ āϝā§āĻā§āϞ⧠f(k) āĻāĻāĻžāϰ⧠āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āϝāĻžāϝāĻŧ, āϝā§āĻāĻžāύ⧠f(k) = 2k āϝāĻĻāĻŋ k āĻŦāĻŋāĻā§āĻĄāĻŧ āĻšāϝāĻŧ, āĻāϰ f(k) = 2k+1 āϝāĻĻāĻŋ k āĻā§āĻĄāĻŧ āĻšāϝāĻŧ?
How many integers from 777 to 2222 can be expressed as f(k), where f(k) = 2k for odd k, and f(k) = 2k+1 for even k?
ā§Ē. ⧍ā§Ļ⧍⧍-āĻāϰ āĻā§āϝāĻŧā§ āĻā§āĻ āĻāĻŦāĻ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻāĻžāĻā§āϝ āĻāĻŽāύ āĻāϤāĻā§āϞ⧠āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻ āϏāĻāĻā§āϝāĻž āĻāĻā§?
How many square numbers less than 2022 are divisible by 3?
ā§Ģ. x āĻāĻāĻāĻŋ āϧāύāĻžāϤā§āĻŽāĻ āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž, āĻāĻŦāĻ (x+77) āĻāĻāϝāĻŧāĻ āĻĒā§āϰā§āĻŖāĻŦāϰā§āĻāĨ¤ āĻāĻŽāύ x-āĻāϰ āϝā§āĻāĻĢāϞ āĻāϤ?
x is a positive integer such that both x and (x+77) are squares of integers. Find the total value of all such x.
ā§Ŧ. ā§ā§Ļ-āĻāϰ āϏāĻŦ āĻā§āĻĒāĻžāĻĻāĻ āĻĻāĻŋāϝāĻŧā§ đ/b āĻāĻāĻžāϰ⧠āĻāĻ āĻŋāϤ āĻāĻā§āύāĻžāĻāĻļāĻā§āϞā§āϰ āϝā§āĻāĻĢāϞ đ/nāĨ¤ m+n-āĻāϰ āĻŽāĻžāύ āĻāϤ?
The sum of fractions formed as đ/b, where (đ, b) are divisors of 70, is expressed as đ/n. Find (đ + n), where (đ, n) are co-primes.
ā§. BCDE āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰāĨ¤ BC = 9, CD = 6āĨ¤ BCDE-āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϝāĻĻāĻŋ ABCD-āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞā§āϰ āϏāĻŽāĻžāύ āĻšāϝāĻŧ, āϤāĻŦā§ ABCD-āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ?
BCDE is a rectangle with BC = 9, CD = 6. If the area of BCDE equals the area of ABCD, what is the area of ABCD?
ā§Ž. ā§§ā§ĒāĻāĻŋ āĻā§āĻĒāĻžāĻĻāĻ āĻĨāĻžāĻāĻž āϏāĻŦāĻā§āϝāĻŧā§ āĻā§āĻ āϧāύāĻžāϤā§āĻŽāĻ āĻĒā§āϰā§āĻŖāϏāĻāĻā§āϝāĻž āĻāϤ?
What is the smallest positive integer with exactly 14 factors?
⧝. ā§Ļ āĻĨā§āĻā§ ā§§ā§Ļ āĻĒāϰā§āϝāύā§āϤ āϏāĻāĻā§āϝāĻž āĻāĻŽāύāĻāĻžāĻŦā§ āϏāĻžāĻāĻžāύā§āϰ āĻāϤāĻā§āϞ⧠āĻāĻĒāĻžāϝāĻŧ āĻāĻā§ āϝāĻžāϤ⧠āĻĒāĻžāϰā§āĻļā§āĻŦāĻŦāϰā§āϤ⧠āĻĻā§āĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ ā§§ā§§-āĻāϰ āĻŦā§āĻļāĻŋ āύāĻž āĻšāϝāĻŧ?
How many ways can you order the numbers 0 to 10 such that the sum of two adjacent numbers is not greater than 11?
ā§§ā§Ļ. āĻāĻāĻāĻŋ āĻŦā§āϤā§āϤā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 100Ī; BD = 8, AB = 6āĨ¤ BD-āĻāϰ āĻĻā§āϰā§āĻā§āϝ \[-12 + x\sqrt{39}) / y\] āĻāĻāĻžāϰ⧠āϞā§āĻāĻž āϝāĻžāϝāĻŧāĨ¤ x, y-āĻāϰ āϞāϏāĻžāĻā§ āĻāϤ?
The area of a circle is 100Ī. If BD = 8, AB = 6, the length of BD can be expressed as \[-12 + x\sqrt{39}) / y\]. Find the LCM of x and y.